255 research outputs found

    Geometrical-based algorithm for variational segmentation and smoothing of vector-valued images

    No full text
    An optimisation method based on a nonlinear functional is considered for segmentation and smoothing of vector-valued images. An edge-based approach is proposed to initially segment the image using geometrical properties such as metric tensor of the linearly smoothed image. The nonlinear functional is then minimised for each segmented region to yield the smoothed image. The functional is characterised with a unique solution in contrast with the Mumford–Shah functional for vector-valued images. An operator for edge detection is introduced as a result of this unique solution. This operator is analytically calculated and its detection performance and localisation are then compared with those of the DroGoperator. The implementations are applied on colour images as examples of vector-valued images, and the results demonstrate robust performance in noisy environments

    Nonlinear optimisation method for image segmentation and noise reduction using geometrical intrinsic properties

    No full text
    This paper considers the optimisation of a nonlinear functional for image segmentation and noise reduction. Equations optimising this functional are derived and employed to detect edges using geometrical intrinsic properties such as metric and Riemann curvature tensor of a smooth differentiable surface approximating the original image. Images are then smoothed using a Helmholtz type partial differential equation. The proposed approach is shown to be very efficient and robust in the presence of noise, and the reported results demonstrate better performance than the conventional derivative based edge detectors

    Efficient Algorithms for Mumford-Shah and Potts Problems

    Get PDF
    In this work, we consider Mumford-Shah and Potts models and their higher order generalizations. Mumford-Shah and Potts models are among the most well-known variational approaches to edge-preserving smoothing and partitioning of images. Though their formulations are intuitive, their application is not straightforward as it corresponds to solving challenging, particularly non-convex, minimization problems. The main focus of this thesis is the development of new algorithmic approaches to Mumford-Shah and Potts models, which is to this day an active field of research. We start by considering the situation for univariate data. We find that switching to higher order models can overcome known shortcomings of the classical first order models when applied to data with steep slopes. Though the existing approaches to the first order models could be applied in principle, they are slow or become numerically unstable for higher orders. Therefore, we develop a new algorithm for univariate Mumford-Shah and Potts models of any order and show that it solves the models in a stable way in O(n^2). Furthermore, we develop algorithms for the inverse Potts model. The inverse Potts model can be seen as an approach to jointly reconstructing and partitioning images that are only available indirectly on the basis of measured data. Further, we give a convergence analysis for the proposed algorithms. In particular, we prove the convergence to a local minimum of the underlying NP-hard minimization problem. We apply the proposed algorithms to numerical data to illustrate their benefits. Next, we apply the multi-channel Potts prior to the reconstruction problem in multi-spectral computed tomography (CT). To this end, we propose a new superiorization approach, which perturbs the iterates of the conjugate gradient method towards better results with respect to the Potts prior. In numerical experiments, we illustrate the benefits of the proposed approach by comparing it to the existing Potts model approach from the literature as well as to the existing total variation type methods. Hereafter, we consider the second order Mumford-Shah model for edge-preserving smoothing of images which –similarly to the univariate case– improves upon the classical Mumford-Shah model for images with linear color gradients. Based on reformulations in terms of Taylor jets, i.e. specific fields of polynomials, we derive discrete second order Mumford-Shah models for which we develop an efficient algorithm using an ADMM scheme. We illustrate the potential of the proposed method by comparing it with existing methods for the second order Mumford-Shah model. Further, we illustrate its benefits in connection with edge detection. Finally, we consider the affine-linear Potts model for the image partitioning problem. As many images possess linear trends within homogeneous regions, the classical Potts model frequently leads to oversegmentation. The affine-linear Potts model accounts for that problem by allowing for linear trends within segments. We lift the corresponding minimization problem to the jet space and develop again an ADMM approach. In numerical experiments, we show that the proposed algorithm achieves lower energy values as well as faster runtimes than the method of comparison, which is based on the iterative application of the graph cut algorithm (with α-expansion moves)

    Anisotropic diffusion of surface normals for feature preserving surface reconstruction

    Get PDF
    Journal ArticleFor 3D surface reconstruction problems with noisy and incomplete range data measured from complex scenes with arbitrary topologies, a low-level representation, such as level set surfaces, is used. Such surface reconstruction is typically accomplished by minimizing a weighted sum of data-model discrepancy and model smoothness terms. This paper introduces a new onlinear model smoothness term for surface reconstruction based on variations of the surface normals. A direct solution requires solving a fourth-order partial differential equation (PDE), which is very difficult with conventional numerical techniques. Our solution is based on processing the normals separately from the surface, which allows us to separate the problem into two second-order PDEs. The proposed method can smooth complex, noisy surfaces, while preserving sharp, geometric features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion

    Anisotropic diffusion of surface normals for feature preserving surface reconstruction

    Get PDF
    technical reportFor 3D surface reconstruction problems with noisy and incomplete range data measured from complex scenes with arbitrary topologies, a low-level representation, such as level set surfaces, is used. Such surface reconstruction is typically accomplished by minimizing a weighted sum of data-model discrepancy and model smoothness terms. This paper introduces a new nonlinear model smoothness term for surface reconstruction based on variations of the surface normals. A direct solution requires solving a fourth-order partial differential equation (PDE), which is very difficult with conventional numerical techniques. Our solution is based on processing the normals separately from the surface, which allows us to separate the problem into two second-order PDEs. The proposed method can smooth complex, noisy surfaces, while preserving sharp, geometric features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion
    • 

    corecore