2,462 research outputs found

    Smoothed Analysis of Tensor Decompositions

    Full text link
    Low rank tensor decompositions are a powerful tool for learning generative models, and uniqueness results give them a significant advantage over matrix decomposition methods. However, tensors pose significant algorithmic challenges and tensors analogs of much of the matrix algebra toolkit are unlikely to exist because of hardness results. Efficient decomposition in the overcomplete case (where rank exceeds dimension) is particularly challenging. We introduce a smoothed analysis model for studying these questions and develop an efficient algorithm for tensor decomposition in the highly overcomplete case (rank polynomial in the dimension). In this setting, we show that our algorithm is robust to inverse polynomial error -- a crucial property for applications in learning since we are only allowed a polynomial number of samples. While algorithms are known for exact tensor decomposition in some overcomplete settings, our main contribution is in analyzing their stability in the framework of smoothed analysis. Our main technical contribution is to show that tensor products of perturbed vectors are linearly independent in a robust sense (i.e. the associated matrix has singular values that are at least an inverse polynomial). This key result paves the way for applying tensor methods to learning problems in the smoothed setting. In particular, we use it to obtain results for learning multi-view models and mixtures of axis-aligned Gaussians where there are many more "components" than dimensions. The assumption here is that the model is not adversarially chosen, formalized by a perturbation of model parameters. We believe this an appealing way to analyze realistic instances of learning problems, since this framework allows us to overcome many of the usual limitations of using tensor methods.Comment: 32 pages (including appendix

    Smoothed Analysis in Unsupervised Learning via Decoupling

    Full text link
    Smoothed analysis is a powerful paradigm in overcoming worst-case intractability in unsupervised learning and high-dimensional data analysis. While polynomial time smoothed analysis guarantees have been obtained for worst-case intractable problems like tensor decompositions and learning mixtures of Gaussians, such guarantees have been hard to obtain for several other important problems in unsupervised learning. A core technical challenge in analyzing algorithms is obtaining lower bounds on the least singular value for random matrix ensembles with dependent entries, that are given by low-degree polynomials of a few base underlying random variables. In this work, we address this challenge by obtaining high-confidence lower bounds on the least singular value of new classes of structured random matrix ensembles of the above kind. We then use these bounds to design algorithms with polynomial time smoothed analysis guarantees for the following three important problems in unsupervised learning: 1. Robust subspace recovery, when the fraction α\alpha of inliers in the d-dimensional subspace T⊂RnT \subset \mathbb{R}^n is at least α>(d/n)ℓ\alpha > (d/n)^\ell for any constant integer ℓ>0\ell>0. This contrasts with the known worst-case intractability when α<d/n\alpha< d/n, and the previous smoothed analysis result which needed α>d/n\alpha > d/n (Hardt and Moitra, 2013). 2. Learning overcomplete hidden markov models, where the size of the state space is any polynomial in the dimension of the observations. This gives the first polynomial time guarantees for learning overcomplete HMMs in a smoothed analysis model. 3. Higher order tensor decompositions, where we generalize the so-called FOOBI algorithm of Cardoso to find order-ℓ\ell rank-one tensors in a subspace. This allows us to obtain polynomially robust decomposition algorithms for 2ℓ2\ell'th order tensors with rank O(nℓ)O(n^{\ell}).Comment: 44 page

    Polynomial-time Tensor Decompositions with Sum-of-Squares

    Full text link
    We give new algorithms based on the sum-of-squares method for tensor decomposition. Our results improve the best known running times from quasi-polynomial to polynomial for several problems, including decomposing random overcomplete 3-tensors and learning overcomplete dictionaries with constant relative sparsity. We also give the first robust analysis for decomposing overcomplete 4-tensors in the smoothed analysis model. A key ingredient of our analysis is to establish small spectral gaps in moment matrices derived from solutions to sum-of-squares relaxations. To enable this analysis we augment sum-of-squares relaxations with spectral analogs of maximum entropy constraints.Comment: to appear in FOCS 201

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Tensor decomposition with generalized lasso penalties

    Full text link
    We present an approach for penalized tensor decomposition (PTD) that estimates smoothly varying latent factors in multi-way data. This generalizes existing work on sparse tensor decomposition and penalized matrix decompositions, in a manner parallel to the generalized lasso for regression and smoothing problems. Our approach presents many nontrivial challenges at the intersection of modeling and computation, which are studied in detail. An efficient coordinate-wise optimization algorithm for (PTD) is presented, and its convergence properties are characterized. The method is applied both to simulated data and real data on flu hospitalizations in Texas. These results show that our penalized tensor decomposition can offer major improvements on existing methods for analyzing multi-way data that exhibit smooth spatial or temporal features

    Tensor decompositions for learning latent variable models

    Get PDF
    This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models---including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation---which exploits a certain tensor structure in their low-order observable moments (typically, of second- and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models
    • …
    corecore