10 research outputs found

    Minimal-variance distributed scheduling under strict demands and deadlines

    Get PDF
    Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this abstract, we characterize an optimal distributed algorithm that minimizes service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. Moreover, we show how close the performance of the optimal distributed algorithm is to that of the optimal centralized algorithm by deriving a competitive-ratio-like bound

    Minimal-variance distributed scheduling under strict demands and deadlines

    Get PDF
    Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this abstract, we characterize an optimal distributed algorithm that minimizes service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. Moreover, we show how close the performance of the optimal distributed algorithm is to that of the optimal centralized algorithm by deriving a competitive-ratio-like bound

    Minimal-Variance Distributed Deadline Scheduling in a Stationary Environment

    Get PDF
    Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this paper, we propose distributed algorithms that minimize service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. We also characterize the optimal distributed policies for more general settings with soft demand requirements, soft deadline requirements, or both. Additionally, we show how close the performance of the optimal distributed policy is to that of the optimal centralized policy by deriving a competitive-ratio-like bound

    Understanding electric vehicle charging behaviours

    Get PDF
    The UK Government has announced its intention to ban the sales of internal combustion cars and vans from 2035. Ofgem's Decarbonisation Action Plan states that GB electricity network operators should have a network that can power 10 million electric vehicles by 2030. It is widely recognized and acknowledged that stress on current electricity networks can be alleviated with smart technologies, which enable smart demand management using advanced predictive analytics, such as accurate forecasting algorithms, and prescriptive analytics, such as advanced load balancing and optimization algorithms. To successfully utilize analytical models for charging electric vehicles at scale it is essential for these models to inherently capture vehicle users' interaction with charging infrastructure, both personal and public. Hence the need for understanding charging behaviours and the factors that influence these behaviours. The aim of this project is to utilize public and home charging data to develop a finer understanding of charging behaviours and influencing factors, and explore algorithmic frameworks that embed these behaviours in realizing large scale smart charging solutions

    Minimal-Variance Distributed Deadline Scheduling in a Stationary Environment

    Get PDF
    Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, variability in service capacity often incurs operational and infrastructure costs. In this paper, we propose distributed algorithms that minimize service capacity variability when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes service capacity variance subject to strict demand and deadline requirements under stationary Poisson arrivals. We also characterize the optimal distributed policies for more general settings with soft demand requirements, soft deadline requirements, or both. Additionally, we show how close the performance of the optimal distributed policy is to that of the optimal centralized policy by deriving a competitive-ratio-like bound

    Joint Rate Control and Demand Balancing for Electric Vehicle Charging

    Get PDF
    Charging stations have become indispensable infrastructure to support the rapid proliferation of electric vehicles (EVs). The operational scheme of charging stations is crucial to satisfy the stability of the power grid and the quality of service (QoS) to EV users. Most existing schemes target either of the two major operations: charging rate control and demand balancing. This partial focus overlooks the coupling relation between the two operations and thus causes the degradation on the grid stability or customer QoS. A thoughtful scheme should manage both operations together. A big challenge to design such a scheme is the aggregated uncertainty caused by their coupling relation. This uncertainty accumulates from three aspects: the renewable generators co-located with charging stations, the power load of other (or non-EV) consumers, and the charging demand arriving in the future. To handle this aggregated uncertainty, we propose a stochastic optimization based operational scheme. The scheme jointly manages charging rate control and demand balancing to satisfy both the grid stability and user QoS. Further, our scheme consists of two algorithms that we design for managing the two operations respectively. An appealing feature of our algorithms is that they have robust performance guarantees in terms of the prediction errors on these three aspects. Simulation results demonstrate the efficacy of the proposed operational scheme and also validate our theoretical results

    Smoothed Least-laxity-first Algorithm for EV Charging

    No full text
    We formulate EV charging as a feasibility problem that meets all EVs' energy demands before departure under charging rate constraints and total power constraint. We propose an online algorithm, the smoothed least-laxity-first (sLLF) algorithm, that decides on the current charging rates based on only the information up to the current time. We characterize the performance of the sLLF algorithm analytically and numerically. Numerical experiments with real-world data show that it has significantly higher rate of generating feasible EV charging than several other common EV charging algorithms
    corecore