
Minimal-variance distributed scheduling
under strict demands and deadlines

Yorie Nakahira
Caltech

ynakahir@caltech.edu

Andres Ferragut
Universidad ORT Uruguay

ferragut@ort.edu.uy

Adam Wierman
Caltech

adamw@caltech.edu

ABSTRACT

Many modern schedulers can dynamically adjust their ser-
vice capacity to match the incoming workload. At the same
time, however, variability in service capacity often incurs op-
erational and infrastructure costs. In this abstract, we char-
acterize an optimal distributed algorithm that minimizes
service capacity variability when scheduling jobs with dead-
lines. Specifically, we show that Exact Scheduling minimizes
service capacity variance subject to strict demand and dead-
line requirements under stationary Poisson arrivals. More-
over, we show how close the performance of the optimal
distributed algorithm is to that of the optimal centralized
algorithm by deriving a competitive-ratio-like bound.

Keywords

Deadline scheduling, Service capacity control, Exact Schedul-
ing, Online distributed algorithm

1. INTRODUCTION

Traditionally, the scheduling literature has assumed a static
(fixed) service capacity. However, it is increasingly common
for modern applications to have the ability to dynamically
adjust their service capacity in order to match the current
demand. For example, when using cloud computing services,
one can modify the total computing capacity by changing
the number of computing instances and their speeds. Power
distribution networks can also adapt the energy supply to
match the energy demand as it changes over time.

The ability to adapt service capacity dynamically gives
rise to challenging new design questions. In particular, how
to maintain predictability and stability of service capacity
is of great importance in such applications since peaks and
fluctuations often come with significant costs [1]. This trend
is especially true for the examples of cloud computing and
power distribution networks mentioned above. Cloud con-
tent providers prefer stable and predictable service capacity
because on-demand contracts for compute instances (e.g.,
Amazon EC2 and Microsoft Azure) are typically more ex-
pensive than long-term contracts. Additionally, large fluc-
tuations in service capacity induce unnecessary power con-
sumption and infrastructure strain for computing equipment.
The emerging load from electric vehicle charging stations
also leads to similar challenges in power distribution net-
works. Charging stations require stability in power con-

Copyright is held by author/owner(s).

sumption because fluctuations and large peaks in power use
may strain the grid infrastructure and result in a high peak
charge for the station operators. The stations also prefer
predictable power consumption because purchasing power
in real time is typically more expensive than purchasing in
advance.

Thus, in situations where service capacity can be dynam-
ically adjusted, an important design goal is to minimize
the costs associated with variability in the service capac-
ity while maintaining high quality of service. In this pa-
per, we study this problem by minimizing the variance of
the service capacity in systems where jobs arrive with de-
mand and deadline requests. Our focus on service capacity
variance is motivated by applications such as cloud comput-
ing and power distribution networks, where contracts often
explicitly depend on service capacity variability, e.g., if a
charging station participates in the regulation market, then
costs/payments rely explicitly on the variance of the total
capacity [2].

Although the literature on deadline scheduling is large and
varied (see [3, 4] and references therein), the optimal algo-
rithms are only known for certain niche cases such as de-
terministic worst-case settings [5], single server systems [6],
and heavy traffic settings [7]. In particular, the problem of
designing an optimal algorithm that minimizes service ca-
pacity variability while satisfying service quality constraints,
i.e., meeting demands and deadlines, has remained open.
Solving this problem is a challenging task due to the hetero-
geneous constraints (diversity in service requests) and the
size of the state and decision space (the number of possi-
ble remaining job profile configurations and feasible control
policies).

The goal of this work is to characterize the distributed
scheduling algorithm that minimizes the variance of service
capacity subject to service quality constraints, e.g., meet-
ing job deadlines and satisfying job demands. Our focus
is on distributed algorithms since implementing centralized
algorithms is likely to be prohibitively slow and costly in
large-scale service systems today. From cloud computing to
power distribution networks, such systems are unlikely to
be able to access global information about every job and
server in the system when deciding the service rate of each
job/server. Therefore, distributed algorithms are a necessity
to enable large-scale implementation.

Our Contributions. In this work, we characterize the opti-
mal distributed policy by using tools from optimization and
control theory. Specifically, we show that Exact Schedul-

ing is the optimal distributed algorithm, i.e., it minimizes

12 Performance Evaluation Review, Vol. 46, No. 2, September 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216298574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the stationary variance of the service capacity among all
distributed policies that strictly satisfy the service require-
ments. Exact Scheduling is a classical algorithm that works
by finishing job service exactly at their deadlines using a con-
stant service rate [1, 3, 8]. Given that our results focus on
distributed algorithms, we also study how the optimal dis-
tributed algorithm performs compared with the optimal cen-
tralized algorithm, which may provide better performance in
theory but requires prohibitively expensive computation to
find in practice. To answer this question, we derive a closed-
form bound on the performance degradation due to using a
distributed algorithm. The bound suggests that, when the
sojourn time is a deterministic variable, Exact Scheduling
attains the optimal trade-o↵ between service capacity vari-
ance and total remaining demand variance achievable by any
centralized algorithms.

2. PROBLEM FORMULATION

We consider a setting in which a service system dynami-
cally adjusts its capacity to serve jobs that arrive randomly
with heterogeneous service requirements. We use a contin-
uous time model where t 2 R+ denotes a point in time.
Each job, indexed by k 2 V = {1, 2, . . .}, is characterized
by a random arrival time ak, a random service demand σk,
and a random sojourn time ⌧k(≥ σk).

1 To formalize the
scheduler design procedure into an optimization problem,
we introduce below the arrival profiles, the service profiles,
the system dynamics, and the design objectives in detail.

Arrival profiles. We represent the set of jobs as a marked
point process {(ak;σk, ⌧k)}k2V in R+ ⇥S, where the arrival
times ak 2 R+ are the set of points, and the service re-
quirements (σk, ⌧k) 2 S are the set of marks. We assume
that the marked point process is a stationary independently
marked Poisson Point Process, which is defined by a locally
finite non-null intensity measure ⇤(a) on R+ and a mark
density measure f(σ, ⌧) on S [9].2 This also implies that
{(ak;σk, ⌧k)}k2V is a Poisson Point Process on R+ ⇥S with
an intensity measure f(σ, ⌧)⇤. Intuitively,

R
A
f(σ, ⌧)⇤dσd⌧

is the average rate at which jobs with service requirement
(σ, ⌧) 2 A ⇢ S arrive. We additionally assume that S is
bounded, and S ⇢ {(σ, ⌧) : ⌧ ≥ σ ≥ 0}.1
Service profiles. The service system works on each job

k 2 V with a service rate rk(t) ≥ 0. The service rate can take
non-zero values only when the job sojourns in the system,
i.e., rk(t) = 0 for any t /2 [ak, ak + ⌧k]. To meet the service
demand of job k, its service rate must satisfy

Z ak+⌧k

ak

rk(t)dt = σk, k 2 V. (1)

Without loss of generality, rk(t) = 1 is assumed to be the
maximum rate: that is, rk(t) can take any values in [0, 1],
and rk < 1 corresponds to throttling down service speed at
the expense of prolonging job completion times. The above
sojourn time and maximum rate constraints can be jointly
written as

0 rk(t) 1{t 2 [ak, ak + ⌧k)}, (2)

1The condition ⌧k ≥ σk requires a job to have a service
demand that is no more than the maximum service (which
is assume to be 1) times the sojourn time.
2Here, we use (a;σ, ⌧) to denote random variables and
(ak;σk, ⌧k) to denote one realization of them in job k.

where 1{A} denotes the indicator function for an event A.
The resource consumption is defined by the (active) service
capacity

P (t) =
X

k2V

rk(t).

System dynamics. At each time t 2 R+, job k has a
remaining demand xk(t) = σk−

R t

ak
rk(h)dh and a remaining

time yk(t) = ak + ⌧k − t. The set of remaining jobs in the
system can be considered as a Point Process {(xk(t), yk(t))}k
in R2, where x-axis is the remaining demand and y-axis is
the remaining time (see Fig 1). At time t, each point(job)
moves with velocity −rk(t) in x-axis and velocity −1 in y-
axis.

Scheduling algorithms. An online scheduling algorithm
decides the service rates in real-time without using the fu-
ture job arrival information. For scalability, we additionally
restrict our attention to the following form of distributed al-
gorithms which decide the service rate of a job only using
its own information:

rk(t) = u(xk(t), yk(t)) ≥ 0. (3)

Here, u : R2
+ ! R+ is a deterministic function of the re-

maining demand xk(t) and the remaining time yk(t) of each
job k at time t. Under any policy of the form (3), the set of
jobs remaining in the system converges to a stationary dis-
tribution. This stationary distribution is a Spatial Poisson
Point Process with intensity measure λ(x, y) satisfying

0 =
@

@x
(λ(x, y)u(x, y)) +

@

@y
λ(x, y) + ⇤f(x, y), (4)

where x is the remaining demand and y is the remaining
time. Because the remaining job distribution converges to a
stationary distribution, P (t) also converges to a stationary
distribution.3

Design objectives. We consider minimizing service capac-
ity variability under hard demand and deadline constraints:3

minimize
u:(1)(2)(3)(4)

Var(P), (5)

where Var(P) is a functional of u and λ(σ, ⌧) satisfying (4).
The optimization problem (5) has demand constraints as
in (1) and service rate constraints as in (2), and the opti-
mization variable u is constrained by (3) to be a distributed
algorithm.

3. OPTIMAL SCHEDULING

When the goal is to minimize Var(P), it is worth not-
ing that peaks in service rate amplifies the uncertainties in
the future arrivals, which in turn produce large variance in
P (t) =

P
k2V rk(t) =

P
k2V u(xk(t), yk(t)). This observa-

tion motivate us to use a flat service rate (Fig 1), which is
achieved by the scheduling policy

u(x, y) =

8
<

:

x

y
, if y > 0,

0, otherwise.
(6)

This policy is known as Exact Scheduling and works by fin-
ishing all jobs exactly at their deadlines using a constant

3We use E[P] and Var(P) to represent the stationary mean
and variance of a stochastic process P (t).

Performance Evaluation Review, Vol. 46, No. 2, September 2018 13

Remaining demand (x)

R
em

a
in
in
g
ti
m
e
(y
)

Unfeasible
region

Figure 1: Exact scheduling depicted in the space of remaining

demand x and remaining time y.

service rate. It is also highly scalable because it is dis-
tributed and asynchronous, and it does not require much
computation or memory use. Although existing literature
has analyzed its performance in various settings [1, 3, 8, 10],
it is not known whether and when the policy is optimal.
Our main result is the following theorem, which shows that
Exact Scheduling minimizes the variance of service capacity
under stationary job arrivals and strict demand and deadline
constraints among distributed algorithms.

Theorem 1. Exact Scheduling (6) is the optimal solution

of (5) and achieves the optimal value
2

Var(P) = ⇤E

σ2

⌧

�
.

Theorem 1 shows the achievable performance improve-
ment by performing distributed service capacity control. If
no control is applied, i.e., rk(t) = 1{t 2 [ak, ak + σk)},
then E(P) = Var(P) = ⇤E[σ]. By performing a distributed
service capacity control, the stationary variance can be re-
duced by ⇤E [σ(⌧ − σ)/⌧] , where ⌧−σ is the slack time (the
amount of time left at job completion if a job is served at
its maximum service rate upon arrival).

Given that we focus on distributed algorithms for scala-
bility, it is important to understand how much performance
degradation is incurred due to restricting ourselves to dis-
tributed policies compared to centralized policies. Central-
ized policies are the class of algorithms of the form

rk(t) = w(k, t, At), k 2 V, (7)

where At = {(ak,σk, ⌧k, xk(t), yk(t)) : ak t} is the set that
contains the information of jobs arriving before t, and w is
a deterministic mapping from (k, t, At) to rk(t).

Lemma 1. Under any centralized policy of the form (7),
the stationary variance of P (t) is lower-bounded by

Var(P) ≥ ⇤2E[σ2]2

4Var(X)
,

where X(t) is the total amount of remaining service demand

of jobs arriving before t.

Lemma 1 characterizes the trade-o↵ between achieving
a small variance of X(t) and achieving a small variance of
P (t). An immediate consequence of Lemma 1 is a competitive-
ratio-like bound of Exact Scheduling.

Corollary 1. Let Var(P) be the stationary variance of

P (t) that is attained by Exact Scheduling (6). Let Var(P ⇤) be

the minimum stationary variance attainable by any central-

ized algorithm (7) with the same Var(X) as Exact Schedul-

ing. Then, the following relation holds:

Var(P)

Var(P ⇤)
 E[σ2/⌧]E[σ2⌧]

E[σ2]2
,

where all expectations on the right hand side are taken over

the arrival distribution.

Corollary 1 suggests that if sojourn time ⌧ is a deter-
ministic random variable, then Exact Scheduling performs
as well as the best centralized algorithm having the same
Var(X) as Exact Scheduling. One such example is when
all jobs have identical sojourn times that equal their service
demands, i.e., ⌧k = ⌧j and ⌧k = σk for any k, j 2 V. In
this system, due to constraints (1) and (2), both the opti-
mal centralized policy and the optimal distributed policy is
rk(t) = 1{t 2 [ak, ak + ⌧k)}.

4. REFERENCES

[1] Giorgio C Buttazzo. Hard real-time computing

systems: predictable scheduling algorithms and

applications, volume 24. Springer Science & Business
Media, 2011.

[2] Mahdi Behrangrad. A review of demand side
management business models in the electricity market.
Renewable and Sustainable Energy Reviews,
47:270–283, 2015.

[3] Andres Ferragut, Fernando Paganini, and Adam
Wierman. Controlling the variability of capacity
allocations using service deferrals. ACM Transactions

on Modeling and Performance Evaluation of

Computing Systems (TOMPECS), 2(3):15, 2017.

[4] Yorie Nakahira, Niangjun Chen, Lijun Chen, and
Steven H Low. Smoothed least-laxity-first algorithm
for ev charging. In Proceedings of the Eighth

International Conference on Future Energy Systems,
pages 242–251. ACM, 2017.

[5] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed
scaling to manage energy and temperature. Journal of
the ACM (JACM), 54(1):3, 2007.

[6] Shivendra S Panwar, Don Towsley, and Jack K Wolf.
Optimal scheduling policies for a class of queues with
customer deadlines to the beginning of service.
Journal of the ACM (JACM), 35(4):832–844, 1988.

[7] John P Lehoczky. Using real-time queueing theory to
control lateness in real-time systems. ACM
SIGMETRICS Performance Evaluation Review,
25(1):158–168, 1997.

[8] Chung Laung Liu and James W Layland. Scheduling
algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[9] François Baccelli and Bartlomiej B laszczyszyn.
Stochastic Geometry and Wireless Networks, Volume I

- Theory. Now Publishers, 2009.

[10] John Lehoczky, Lui Sha, and Ye Ding. The rate
monotonic scheduling algorithm: Exact
characterization and average case behavior. In Real

Time Systems Symposium, 1989., Proceedings., pages
166–171. IEEE, 1989.

14 Performance Evaluation Review, Vol. 46, No. 2, September 2018

