5 research outputs found

    Accurate geometry modeling of vasculatures using implicit fitting with 2D radial basis functions

    Get PDF
    Accurate vascular geometry modeling is an essential task in computer assisted vascular surgery and therapy. This paper presents a vessel cross-section based implicit vascular modeling technique, which represents a vascular surface as a set of locally fitted implicit surfaces. In the proposed method, a cross-section based technique is employed to extract from each cross-section of the vascular surface a set of points, which are then fitted with an implicit curve represented as 2D radial basis functions. All these implicitly represented cross-section curves are then being considered as 3D cylindrical objects and combined together using a certain partial shape-preserving spline to build a complete vessel branch; different vessel branches are then blended using a extended smooth maximum function to construct the complete vascular tree. Experimental results show that the proposed method can correctly represent the morphology and topology of vascular structures with high level of smoothness. Both qualitative comparison with other methods and quantitative validations to the proposed method have been performed to verify the accuracy and smoothness of the generated vascular geometric models

    Smooth piecewise polynomial blending operations for implicit shapes

    No full text
    In this paper, we present a new set of blending operations for implicitly defined geometric shapes. The proposed shape operators are piecewise polynomial and blending range controllable, and can be constructed to any required degree of smoothness. The key idea behind these techniques is the introduction of the concept of the smooth absolute functions, which in turn lead to the definition of smooth maximum functions. These novel generalized absolute functions can be constructed recursively or through a recursively defined functions, and can thus be computed cheaply. In addition, the underlying mathematical descriptions of these shape operations are very simple and elegant

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy
    corecore