445 research outputs found

    Using social media for air pollution detection-the case of Eastern China Smog

    Get PDF
    Air pollution has become an urgent issue that affecting public health and people’s daily life in China. Social media as potential air quality sensors to surveil air pollution is emphasized recently. In this research, we picked up a case-2013 Eastern China smog and focused on two of the most popular Chinese microblog platforms Sina Weibo and Tencent Weibo. The purpose of this study is to determine whether social media can be capable to be used as ‘sensors’ to monitor air pollution in China and to provide an innovative model for air pollution detection through social media. Based on that, we propose our research question, how a salient change of air quality expressed on social media discussions to reflect the extent of air pollution. Hence, our research (1) determine the correlation between the volume of air quality-related messages and observed Air quality index (AQI) with the help of time series analysis model; (2) investigate further the impact of a salient change of air quality on the relationship between the people’s subjective perceptions regarding to air pollution released on the Weibo and the extent of air pollution through a co-word network analysis model. Our study illustrates that the discussions on social media about air quality reflect the level of air pollution when the air quality changes saliently

    When Disparities Become Deadly: Spatial Differences in PM2.5 Levels Within the City of Pomona, California

    Get PDF
    This thesis discusses the disparities in particulate matter concentrations between different neighborhoods in the city of Pomona, California, and explores the historical, political and social factors that have shaped these spatial patterns. I argue that urban growth patterns in Pomona, which are historically marked by race and class segregation as a consequence of past discriminatory housing practices, have led to the disproportionate concentrations of air pollutants in low-income, Latino communities in South Pomona. Due to the absence of a local air quality monitoring system, there is a lack of information about and understanding of how poor air quality may be in part responsible for the high prevalence of cardiovascular and respiratory illnesses among South Pomona residents. I carry out a pilot study in which I measure PM2.5 level in different residential locations in Pomona to demonstrate the significant variation in air quality, even at a local level. I find that low-income, Latino communities are exposed to significantly higher levels of PM2.5 than richer, non-Latino white communities, and that the I-10 freeway is a significant source of pollution that could account for the marked differences in PM2.5 between North and South Pomona. I conclude my thesis with regional and local recommendations to address the environmental justice issue of air pollution in Pomona

    smart sustainable islands vs smart sustainable cities

    Get PDF
    This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies

    Proceedings of Abstracts 12th International Conference on Air Quality Science and Application

    Get PDF
    © 2020 The Author(s). This an open access work distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Final Published versio

    Exploring the data needs and sources for severe weather impact forecasts and warnings : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Emergency Management at Massey University, Wellington, New Zealand

    Get PDF
    Figures 2.4 & 2.5 are re-used with permission.The journal articles in Appendices J, L & M are republished under respective Creative Commons licenses. Appendix K has been removed from the thesis until 1 July 2022 in accordance with the American Meteorological Society Copyright Policy, but is available open access at https://doi.org/10.1175/WCAS-D-21-0093.1Early warning systems offer an essential, timely, and cost-effective approach for mitigating the impacts of severe weather hazards. Yet, notable historic severe weather events have exposed major communication gaps between warning services and target audiences, resulting in widespread losses. The World Meteorological Organization (WMO) has proposed Impact Forecasts and Warnings (IFW) to address these communication gaps by bringing in knowledge of exposure, vulnerability, and impacts; thus, leading to warnings that may better align with the position, needs, and capabilities of target audiences. A gap was identified in the literature around implementing IFWs: that of accessing the required knowledge and data around impacts, vulnerability, and exposure. This research aims to address this gap by exploring the data needs of IFWs and identifying existing and potential data sources to support those needs. Using Grounded Theory (GT), 39 interviews were conducted with users and creators of hazard, impact, vulnerability, and exposure (HIVE) data within and outside of Aotearoa New Zealand. Additionally, three virtual workshops provided triangulation with practitioners. In total, 59 people participated in this research. Resulting qualitative data were analysed using GT coding techniques, memo-writing, and diagramming. Findings indicate a growing need for gathering and using impact, vulnerability, and exposure data for IFWs. New insight highlights a growing need to model and warn for social and health impacts. Findings further show that plenty of sources for HIVE data are collected for emergency response and other uses with relevant application to IFWs. Partnerships and collaboration lie at the heart of using HIVE data both for IFWs and for disaster risk reduction. This thesis contributes to the global understanding of how hydrometeorological and emergency management services can implement IFWs, by advancing the discussion around implementing IFWs as per the WMO’s guidelines, and around building up disaster risk data in accordance with the Sendai Framework Priorities. An important outcome of this research is the provision of a pathway for stakeholders to identify data sources and partnerships required for implementing a hydrometeorological IFW system

    Volcanic Gases:Silent Killers

    Get PDF
    This is the accepted manuscript. The final version is available at http://link.springer.com/chapter/10.1007%2F11157_2015_14.Volcanic gases are insidious and often overlooked hazards. The effects of volcanic gases on life may be direct, such as asphyxiation, respiratory diseases and skin burns; or indirect, e.g. regional famine caused by the cooling that results from the presence of sulfate aerosols injected into the stratosphere during explosive eruptions. Although accounting for fewer fatalities overall than some other forms of volcanic hazards, history has shown that volcanic gases are implicated frequently in small-scale fatal events in diverse volcanic and geothermal regions. In order to mitigate risks due to volcanic gases, we must identify the challenges. The first relates to the difficulty of monitoring and hazard communication: gas concentrations may be elevated over large areas and may change rapidly with time. Developing alert and early warning systems that will be communicated in a timely fashion to the population is logistically difficult. The second challenge focuses on education and understanding risk. An effective response to warnings requires an educated population and a balanced weighing of conflicting cultural beliefs or economic interests with risk. In the case of gas hazards, this may also mean having the correct personal protection equipment, knowing where to go in case of evacuation and being aware of increased risk under certain sets of meteorological conditions. In this chapter we review several classes of gas hazard, the risks associated with them, potential risk mitigation strategies and ways of communicating risk. We discuss carbon dioxide flows and accumulations, including lake overturn events which have accounted for the greatest number of direct fatalities, the hazards arising from the injection of sulfate aerosol into the troposphere and into the stratosphere. A significant hazard facing the UK and northern Europe is a “Laki”-style eruption in Iceland, which will be associated with increased risk of respiratory illness and mortality due to poor air quality when gases and aerosols are dispersed over Europe. We discuss strategies for preparing for a future Laki style event and implications for society

    Risk perception of air pollution: A systematic review focused on particulate matter exposure

    Get PDF
    The adverse health effects of exposure to air pollutants, notably to particulate matter (PM), are well-known, as well as the association with measured or estimated concentration levels. The role of perception can be relevant in exploring effects and pollution control actions. The purpose of this study was to explore studies that analyse people’s perception, together with the measurement of air pollution, in order to elucidate the relationship between them. We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In March 2020, PubMed, EMBASE, and Scopus databases were explored in an attempt to search for studies published from 2000 to 2020. The review included 38 studies, most of which were conducted in China (n = 13) and the United States (n = 11) and published over the last four years (n = 26). Three studies were multicenter investigations, while five articles were based on a national-level survey. The air quality (AQ) was assessed by monitoring stations (n = 24) or dispersion models (n = 7). Many studies were population questionnaire-based, air monitoring and time-series studies, and web-based investigations. A direct association between exposure and perception emerged in 20 studies. This systematic review has shown that most of the studies establish a relationship between risk perception measurement. A broad spectrum of concepts and notions related to perception also emerged, which is undoubtedly an indicator of the wealth of available knowledge and is promising for future research
    corecore