147 research outputs found

    Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

    Get PDF
    As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public mis- leadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and pro- cessing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the tech- nology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111644/1/Uludag2015SG-privacy_book-chapter.pd

    Architectural design and load flow study of power flow routers

    Get PDF
    Power flow routing is an emerging control paradigm for the dynamic and responsive control of electric power flows. In this paper, we investigate the design and modelling of the power flow router (PFR) which is a major building block of power flow routing. First, a generic PFR architecture is proposed to encapsulate the desired functions of PFRs. Then, the load flow model of PFRs is developed and incorporated into the optimal power flow (OPF) framework. Based on the load flow model, the control capabilities of PFR, such as decoupled branch power flows and enlarged flow regions, are analysed. With particular attention to available transfer capability (ATC), an OPF study on the standard IEEE benchmark systems with 14, 57, and 118 buses has been performed to show that ATC can be enhanced remarkably by installing the proposed PFRs at some critical buses of the power network.published_or_final_versio

    Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends

    Get PDF
    Secure data aggregation is an important process that enables a smart meter to perform efficiently and accurately. However, the fault tolerance and privacy of the user data are the most serious concerns in this process. While the security issues of Smart Grids are extensively studied, these two issues have been ignored so far. Therefore, in this paper, we present a comprehensive survey of fault-tolerant and differential privacy schemes for the Smart Gird. We selected papers from 2010 to 2021 and studied the schemes that are specifically related to fault tolerance and differential privacy. We divided all existing schemes based on the security properties, performance evaluation, and security attacks. We provide a comparative analysis for each scheme based on the cryptographic approach used. One of the drawbacks of existing surveys on the Smart Grid is that they have not discussed fault tolerance and differential privacy as a major area and consider them only as a part of privacy preservation schemes. On the basis of our work, we identified further research areas that can be explored

    Enabling Privacy in a Distributed Game-Theoretical Scheduling System for Domestic Appliances

    Get PDF
    Demand side management (DSM) makes it possible to adjust the load experienced by the power grid while reducing the consumers' bill. Game-theoretic DSM is an appealing decentralized approach for collaboratively scheduling the usage of domestic electrical appliances within a set of households while meeting the users' preferences about the usage time. The drawback of distributed DSM protocols is that they require each user to communicate his/her own energy consumption patterns, which may leak sensitive information regarding private habits. This paper proposes a distributed privacy-friendly DSM system that preserves users' privacy by integrating data aggregation and perturbation techniques: users decide their schedule according to aggregated consumption measurements perturbed by means of additive white Gaussian noise. We evaluate the noise power and the number of users required to achieve a given privacy level, quantified by means of the increase of the information entropy of the aggregated energy consumption pattern. The performance of our proposed DSM system is compared to the one of a benchmark system that does not support privacy preservation in terms of total bill, peak demand, and convergence time. Results show that privacy can be improved at the cost of increasing the peak demand and the number of game iterations, whereas the total bill is only marginally incremented

    Smart Microgrids: Optimizing Local Resources toward Increased Efficiency and a More Sustainable Growth

    Get PDF
    Smart microgrids are a possibility to reduce complexity by performing local optimization of power production, consumption and storage. We do not envision smart microgrids to be island solutions but rather to be integrated into a larger network of microgrids that form the future energy grid. Operating and controlling a smart microgrid involves optimization for using locally generated energy and to provide feedback to the user when and how to use devices. This chapter shows how these issues can be addressed starting with measuring and modeling energy consumption patterns by collecting an energy consumption dataset at device level. The open dataset allows to extract typical usage patterns and subsequently to model test scenarios for energy management algorithms. Section 3 discusses means for analyzing measured data and for providing detailed feedback about energy consumption to increase customers’ energy awareness. Section 4 shows how renewable energy sources can be integrated in a smart microgrid and how energy production can be accurately predicted. Section 5 introduces a self-organizing local energy system that autonomously coordinates production and consumption via an agent-based energy auction system. The final section discusses how the proposed methods contribute to sustainable growth and gives an outlook to future research
    • …
    corecore