42,312 research outputs found

    UniquID: A Quest to Reconcile Identity Access Management and the Internet of Things

    Full text link
    The Internet of Things (IoT) has caused a revolutionary paradigm shift in computer networking. After decades of human-centered routines, where devices were merely tools that enabled human beings to authenticate themselves and perform activities, we are now dealing with a device-centered paradigm: the devices themselves are actors, not just tools for people. Conventional identity access management (IAM) frameworks were not designed to handle the challenges of IoT. Trying to use traditional IAM systems to reconcile heterogeneous devices and complex federations of online services (e.g., IoT sensors and cloud computing solutions) adds a cumbersome architectural layer that can become hard to maintain and act as a single point of failure. In this paper, we propose UniquID, a blockchain-based solution that overcomes the need for centralized IAM architectures while providing scalability and robustness. We also present the experimental results of a proof-of-concept UniquID enrolment network, and we discuss two different use-cases that show the considerable value of a blockchain-based IAM.Comment: 15 pages, 10 figure

    Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems

    Get PDF
    The recent advances in cloud services technology are fueling a plethora of information technology innovation, including networking, storage, and computing. Today, various flavors have evolved of IoT, cloud computing, and so-called fog computing, a concept referring to capabilities of edge devices and users' clients to compute, store, and exchange data among each other and with the cloud. Although the rapid pace of this evolution was not easily foreseeable, today each piece of it facilitates and enables the deployment of what we commonly refer to as a smart scenario, including smart cities, smart transportation, and smart homes. As most current cloud, fog, and network services run simultaneously in each scenario, we observe that we are at the dawn of what may be the next big step in the cloud computing and networking evolution, whereby services might be executed at the network edge, both in parallel and in a coordinated fashion, as well as supported by the unstoppable technology evolution. As edge devices become richer in functionality and smarter, embedding capacities such as storage or processing, as well as new functionalities, such as decision making, data collection, forwarding, and sharing, a real need is emerging for coordinated management of fog-to-cloud (F2C) computing systems. This article introduces a layered F2C architecture, its benefits and strengths, as well as the arising open and research challenges, making the case for the real need for their coordinated management. Our architecture, the illustrative use case presented, and a comparative performance analysis, albeit conceptual, all clearly show the way forward toward a new IoT scenario with a set of existing and unforeseen services provided on highly distributed and dynamic compute, storage, and networking resources, bringing together heterogeneous and commodity edge devices, emerging fogs, as well as conventional clouds.Peer ReviewedPostprint (author's final draft

    Secure and Trustable Electronic Medical Records Sharing using Blockchain

    Full text link
    Electronic medical records (EMRs) are critical, highly sensitive private information in healthcare, and need to be frequently shared among peers. Blockchain provides a shared, immutable and transparent history of all the transactions to build applications with trust, accountability and transparency. This provides a unique opportunity to develop a secure and trustable EMR data management and sharing system using blockchain. In this paper, we present our perspectives on blockchain based healthcare data management, in particular, for EMR data sharing between healthcare providers and for research studies. We propose a framework on managing and sharing EMR data for cancer patient care. In collaboration with Stony Brook University Hospital, we implemented our framework in a prototype that ensures privacy, security, availability, and fine-grained access control over EMR data. The proposed work can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall costComment: AMIA 2017 Annual Symposium Proceeding
    • …
    corecore