910 research outputs found

    Spatial channel characterization for smart antenna solutions in FDD wireless networks

    Get PDF
    This paper introduces a novel metric for determining the spatial decorrelation between the up- and down-link wireless bearers in frequency division duplex (FDD) networks. This metric has direct relevance to smart or adaptive antenna array base-station deployments in cellular networks, which are known to offer capacity enhancement when compared to fixed coverage solutions. In particular, the results presented were obtained from field trial measurement campaigns for both urban and rural scenarios, with the observations having a direct impact on the choice of down-link beamforming architecture in FDD applications. Further, it is shown that significant spatial decorrelation can occur in urban deployments for bearer separations as small as 5 MHz. Results are presented in terms of both instantaneous characteristics as well as time averaged estimates, thus facilitating the appraisal of smart antenna solutions in both packet and circuit switched network

    Low-complexity smart antenna methods for third-generation W-CDMA systems

    Get PDF

    Dynamic Capacity Enhancement using a Smart Antenna in Mobile Telecommunications Networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system

    Smart antennas in software radio base stations

    Get PDF
    The application of adaptive antenna techniques to fixed-architecture base stations has been shown to offer wide-ranging benefits, including interference rejection capabilities or increased coverage and spectral efficiency. Unfortunately, the actual implementation of these techniques to mobile communication scenarios has traditionally been set back by two fundamental reasons. On one hand, the lack of flexibility of current transceiver architectures does not allow for the introduction of advanced add-on functionalities. On the other hand, the often oversimplified models for the spatiotemporal characteristics of the radio communications channel generally give rise to performance predictions that are, in practice, too optimistic. The advent of software radio architectures represents a big step toward the introduction of advanced receive/transmit capabilities. Thanks to their inherent flexibility and robustness, software radio architectures are the appropriate enabling technology for the implementation of array processing techniques. Moreover, given the exponential progression of communication standards in coexistence and their constant evolution, software reconfigurability will probably soon become the only costefficient alternative for the transceiver upgrade. This article analyzes the requirements for the introduction of software radio techniques and array processing architectures in multistandard scenarios. It basically summarizes the conclusions and results obtained within the ACTS project SUNBEAM,1 proposing algorithms and analyzing the feasibility of implementation of innovative and softwarereconfigurable array processing architectures in multistandard settings.Peer Reviewe

    THROUGHPUT OPTIMIZATION AND ENERGY ENHANCEMENT IN MASSIVE MIMO SYSTEMS

    Get PDF
    For the last few decades mobile technologies have undergone enormous transformation. Mobile broadband for cellular networks has been exponentially evolving with time and in order to meet the future expectation for this high demand newer and better technologies have to be invented. The enormous success of smart electronics such as tablets, smart phones and other hand held devices that use the Internet have generated a lot of Internet traffic therefore, diving LTE to its limit. LTE (4G) which is a high speed wireless communication standard for mobile phones and data terminals is a significant upgrade of GSM and UMTS network technologies. The Technology has downlink peak rates of 300Mbits/s and Uplink peak rates of 75Mbits/s with transfer latency rate of less than 5ms. Power Consumption level for LTE is of significant concern as well as the energy consumption in cellular networks. To solve the limitations in LTE, one great candidate is 5G radio standard. 5G relies heavily on massive MIMO to achieve its targets. This thesis looked into significance of Multi-antenna (Massive MIMO) at the BS as a solution for energy efficiency, increased data rates and the reduction of latency rates in wireless broadband communication. And the simulation results proved that Massive MIMO has better performance compared to conventional MIMO.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    • …
    corecore