8 research outputs found

    Assessing RoQ Attacks on MANETs over Aware and Unaware TPC Techniques

    Get PDF
    Abstract-Adaptation mechanisms, such as transmission power control (TPC) techniques, cognitive radio technology and intelligent antenna, have been applied to efficiently manage the use of resources on wireless ad hoc networks. However, these mechanisms open doors for Reduction of Quality (RoQ) attacks. Those attacks damage network services exploiting adaptation capability and they can be easily launched on mobile ad hoc networks (MANETs). This paper assesses the influence of RoQ attacks on MANETs, aiming to provide insights and lead the design of control access mechanisms able to prevent or mitigate them. We evaluate MANETs supported by a modified IEEE 802.11 using unaware and aware TPC techniques. We analyze the impact of three types of RoQ attacks by simulations, and we show their effect over more dynamic aware TPC techniques

    Medium access control protocol design for wireless communications and networks review

    Get PDF
    Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks

    About the Use of Adaptive Antennas in 60 GHz UWB-OFDM Personal Area Network Transceivers

    Get PDF
    The recent opening of unlicensed spectrum around 60 GHz has raised the interest in designing gigabit Wireless Personal Area Networks (WPANs). Since at 60 GHz the signal attenuation is strong, this band is basically suitable for short range wireless communications. It is understood that directional antennas can be employed to compensate for the path loss and combat the waste of power due to the scatter phenomena characteristic of these high frequencies. This thesis studies the use of adaptive array systems in 60 GHz Ultra Wide Band-Orthogonal Frequency Division Multiplexing (UWB-OFDM) personal area network transceivers. The study has been conducted by simulations and theoretical analysis. Two sensor arrangements have been considered, the Uniform Linear Arrays (ULA) and the Uniform Circular Arrays (UCA), in the simple case of the Line of Sight (LOS) transmission scenario. On the one hand we have designed a IEEE 802.15.3c Medium Access Control (MAC) phased-array controller throughput using Direction of Arrival (DOA) estimation to perform beamsteering. We have simulated the MAC controller with the network simulator ns-2. The impact of the array controller performance onto the achievable throughput of the wireless links has been studied to draw the requirements about the standard deviation of the DOA estimator. On the other hand, we have found the Cramér-Rao Bound (CRB) for DOA estimation of impinging 60 GHz OFDM sources. The requirements of the standard deviation of the DOA estimator are analysed against the CRB for DOA to validate the design of the directional 60 GHz UWB-OFDM transceivers. The comparison reveals that directional 60 GHz UWB-OFDM transceivers can achieve high wireless throughput with a number of pilot subcarriers and for a Signal to Noise Ratio (SNR) operating range typical of next generation WPAN

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%
    corecore