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Abstract 
 

 

 

The recent opening of unlicensed spectrum around 60 GHz has raised the interest 

in designing gigabit Wireless Personal Area Networks (WPANs). Since at 60 GHz 

the signal attenuation is strong, this band is basically suitable for short range 

wireless communications. It is understood that directional antennas can be 

employed to compensate for the path loss and combat the waste of power due to 

the scatter phenomena characteristic of these high frequencies.    

This thesis studies the use of adaptive array systems in 60 GHz Ultra Wide Band-

Orthogonal Frequency Division Multiplexing (UWB-OFDM) personal area 

network transceivers. The study has been conducted by simulations and theoretical 

analysis. Two sensor arrangements have been considered, the Uniform Linear 

Arrays (ULA) and the Uniform Circular Arrays (UCA), in the simple case of the 

Line of Sight (LOS) transmission scenario. 

On the one hand we have designed a IEEE 802.15.3c Medium Access Control 

(MAC) phased-array controller throughput using Direction of Arrival (DOA) 

estimation to perform beamsteering. We have simulated the MAC controller with 

the network simulator ns-2. The impact of the array controller performance onto 

the achievable throughput of the wireless links has been studied to draw the 

requirements about the standard deviation of the DOA estimator. 

On the other hand, we have found the Cramér-Rao Bound (CRB) for DOA 

estimation of  impinging 60 GHz OFDM sources. The requirements of the standard  

deviation of the DOA estimator are analysed against the CRB for DOA to validate 

the design of the directional 60 GHz UWB-OFDM transceivers. 

The comparison reveals that directional 60 GHz UWB-OFDM transceivers can 

achieve high wireless throughput with a number of pilot subcarriers and  for a 

Signal to Noise Ratio (SNR) operating range typical of next generation WPANs. 
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Chapter I. Introduction: Millimeter Wave PANs 
 

 

 

1.1 The 60 GHz Challenge 

Wireless personal area network (WPANs) are used to convey information 

over relatively short distances among a relatively few participants through 

connections involving little or no infrastructure. This allows, small power 

efficient, inexpensive solutions to be implemented for a wide range of 

wireless devices.  The millimeter-wave PANs will be the Gbps evolution of 

the wireless personal area network technology. The first WPAN standard is 

IEEE 802.15.1 which is commonly known with the name of Bluetooth, 

while the latest standard of this wireless family is IEEE 802.15.3a  which 

operates in the 2.4 GHz Industrial Scientific and Medical (ISM) Band [1].  

The recent opening of massive unlicensed spectrum around 60 GHz fosters 

the design of WPANS with a target date rate up 5 Gbps whilst the ones 

operating at 2.4 GHz reaches 55Mbps at most. The abundance of  

bandwidth available and the signal propagation phenomena typical of these 

frequencies make the 60GHz band appealing for the even growing market of 

the short range wideband applications when the other unlicensed bands are 

or are becoming crowded.  

Two organizations that have driven the 60 GHz radios are the IEEE 

802.15.3 standard body [2] and the WiMedia Alliance [3], an industrial 

association. The IEEE 802.15.3 Task Group 3c (IEEE 802.15.3c) is 

developing a mm-wave-based alternative physical layer to the existing 

802.15.3 WPAN standard IEEE-Std-802.15.3-2003. The WiMedia Alliance 

is pushing a 60GHz WPAN industrial standard based on Orthogonal 

Frequency-Division Multiplexing (OFDM) [4]. Figure 1. 1 and Table 1. 1 

show the worldwide availability of bandwidth around 60 GHz and the most 

recent regulatory results for this band.  
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Figure 1. 1- Spectra available around 60 Hz 
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Table 1. 1 - Emission power requirements 

Region Output Power Other Considerations 

Australia 

Canada and USA 

10 mW into antenna 

500 mW peak 

150 W peak EIPR 

min. BW = 100MHz 

Japan 
10 mW into antenna 

+50, -70% power change OT and TTR 
47 dBi max. ant. Gain 

Europe + 55 dBm EIPR min. BW = 500 MHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The core of the design of the millimeter WPANs lies at the physical layer 

(PHY) and the Medium Access Control (MAC) layer. At PHY the wireless 

channel reliability is the issue to face in order to make the high data rates of 

the millimetre WPANs realistically achievable. Probably, OFDM is  the 

most suitable technique for high speed data transmission at 60 GHz. This 

technique partitions a high frequency selective wideband channel to a group 

of nonselective channel, which makes it robust against large delay spreads 

while preserving orthogonality in the frequency domain. Another property 

of OFDM that makes it very attractive for wideband applications is its easy 

scalability to different environment, bandwidth and bit rates. Our study 

assumes OFDM as the data modulation technique of the millimeter WPANs 

[2].  

Another important feature of these frequencies is the strong attenuation that 

the signals undergo in free space propagation and trough materials. 

Directional antennas are the candidate PHY capability to compensate for  

the path loss. In Section 1.3 we review the Smart Antennas in general and in 
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Section 1.3 we discuss the potential benefits of the adaptive antennas in the 

specific case of the mm-wave WPANs by taking into account the features of 

the wireless channel at the frequencies of interest. 

On the other hand, the use of directional antennas raises the problem of 

designing the beamforming intelligence that steers the main lobe of the 

antenna to point the right direction at the right time. The design usually 

involves PHY and MAC, although it could touch other network layers at the 

cost of more end-to-end delay in the case of data delivery failure and more 

compatibility problems among different standards. In Section 1.4 we discuss 

the guidelines of designing adaptive array controllers in more detail.  

 

1.2 Smart Antennas Overview 

Smart antennas are directional antennas that use signal processing both in 

space and time to sense the neighbour electromagnetic environment and to 

adjust their radiation patterns subsequently according to a given 

transmission\receive strategy. This mechanism through which the wireless 

devices become aware of the surrounding environment and react to it when 

transmitting\receiving constitutes the intelligence of the smart antennas. 

This intelligence is usually categorized into: Switched Beam Antennas and 

Adaptive Arrays [5]. 

• Switched Beam Antennas are designed with a fixed set of radiation 

patterns. This type of smart antennas can be created by using multiple 

directive elements each pointing towards different sectors. Basically, the 

outputs of the radiation patterns of the directive elements are 

continuously sampled, and the output statistics are composed by 

selecting (maximum signal) or combined (maximum ratio, equal gain) 

the output samples. Perfect match between the antenna beams and 

direction of arrival is realized only in a limited number of directions, 

those of the single antenna patterns. When plotting the received signal 

strength versus the Direction of Arrival (DOA), one notices that the plot 
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marks the antenna pattern with even nulls in the nulls of the antenna 

pattern. This roll-off behavior is known as scalloping. 

• Adaptive Arrays are antenna systems where the signals at the 

input(output) of the antenna elements are multiplied by complex weights 

that are called weighting elements. These coefficients can be controlled 

both in amplitude and in phase by an array processor network. If the 

array processor is designed to control the phases of the signals at each 

array element but not their magnitudes, the adaptive array is specifically 

called Phased Array. Phased Arrays provide beamsteering only, that is, 

the main array beam is steerable in any direction. If the array processor 

control the amplitudes of the weighting elements as well, the adaptive 

array system is capable of performing beamforming which is 

beamsteering and null placing together. Nulls can be placed in the look 

angles of interfering sources.  

Switched-beam antennas are cheaper than adaptive array antennas but the 

later outperform the former in co-channel interference spatial filtering and 

direction tracking. This difference is of great importance in mobile 

applications.  

 

1.3 Advantages of Directional Antennas for 60 GHz WPANs 

As for the matter of power, there two main points that is worth highlighting. 

Array antenna systems relax the requirements for power amplifiers and 

enlarge the operational coverage of the radio link with respect to isotropic 

antennas. 

According to reports from BWRC, CMOS amplifier gain at 60 GHz is 

below 12 dB [6], which raises a concern about limited transmitted power. If 

each branch can emit a certain amount of power, an M-branch transmitter 

can emit roughly 20log10(M) more power compared to the case of a single 

antenna transmitter [7]. 

On the other hand, the radio coverage increases because the random 

multipath reflections are suppressed and the power is focused in one 
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intended direction. This, on the one hand, reduces the delay spread with 

respect to omni antennas. On the other hand, a comparable spatial outage 

reduction would be highly power consuming in the 60GHz band if 

performed by omni antennas. In fact the free space path loss of the 

millimeter waves is (60/5)
2
 (21.6dB) times the one at 5 GHz and (60/2.4)

2
 or 

(27.96 dB) higher than that at 2.4 GHz. High gain directional antennas 

compensate for the high propagation loss with the antenna gain instead of 

increasing the power emission. This also limits the generation of co-channel 

interference. The attenuation of the millimeter waves is also strong trough 

materials. It is understood that walls of a building act like reliable cell 

boundaries and WPANs in the 60GHz band will be deployed as in-room,     

-corridor or -hall cells with hot spot communications.  

Another advantage of having a set of antenna elements comes with the 

application of diversity techniques to resolve the dominant path(s) in a 

space-time domain for the purpose of improving the link quality/reliability. 

Diversity antenna schemes require low cross correlation among the diversity 

channels. In spatial diversity, the cross correlation of the signals received at 

the array elements is a function of the array element spacing and the power 

angle profile. Placing the array elements at the distance of many times the 

wavelength (λ=5mm at 60 GHz) creates low correlation among the channels 

of the antennas composing the array. 

 The replicas of the signal may be also uncorrelated in the case of a 

significant angle spread so that multiple antenna beams receive distinct 

paths. Angle diversity is expected to provide significant gain improvement 

in rich scatter environments. In [8] it has been shown that at 60 GHz the 

angular spread is quite rich for room and obstructed indoor propagation 

while for Line of Sight (LOS) applications the LOS component is 10 dB 

above the first order reflections if no strong reflectors are present. In this 

case Array Processing can be applied to acquire the LOS direction in order 

to establish directional communication by practicing beamsteering or more 
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in general beamforming. Beamforming increases the network throughput by 

reducing the interference generation/affection in unintended directions.  

 

1.4 Adaptive Arrays Controller 

The design of smart antennas controllers is considered as part of the overall 

design of the MAC protocols, and the realizable gains of smart antennas for 

a specific network depend on the control algorithms in use. Lots of work 

can be found in the literature about the basic mechanisms of employment of 

the smart antennas in WLANs and Mobile Ad Hoc Networks (MANETs) 

for the purpose of reducing the typical collision rates of many contention-

based MAC access protocols like Aloha, CSMA, CSMA/CA and TDMA [9 

- 19]. 

The advantages of the smart antennas come with the narrow beam signal 

transmission and/or reception. The main issue related to such narrow beams 

consists in the knowledge of the pointing direction and in the coordination 

of antenna steering at both ends prior to accomplishing data transfer among 

devices. Information about the steering direction toward the intended device 

is provided through neighbour discovery algorithms which are carried out 

before the link establishment. There are two basic categories of neighbour 

discovery techniques with smart antennas in ad-hoc self-configuring 

wireless networks. One category is composed of those algorithms that do 

not make use of omni receive operations at any stage. These algorithms are 

classified as scan-based algorithms, [15] [17]. When using this class of  

algorithms, devices in the network are synchronized and follow a predefined 

scan sequence to discover neighbours and point the right direction at the 

right time. On the other hand, the other class of neighbours discovery 

strategy is based on the capability provided by the array processing of 

estimating the angle of arrival of a radio source impinging on the array 

system. Direction of arrival information is subsequently exploited for space 

diversity access to the shared radio medium. A thorough characterization of 

the direction of arrival estimation capability is thus of paramount 
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importance to validate the use of array sensors as realistically viable. In [20] 

the authors raise the issue of the antenna controller accuracy with highly 

directive antenna systems. They study the throughput behaviour versus the 

steering error in a Time Division Multiple Access (TDMA) link and show 

that significant throughput degradation may be caused by a pointing error of 

a few degrees. Again the actual benefits of the smart antennas in a specific 

network depend on the antenna control system whose performance is 

directly bound to the one of the algorithms of DOA estimation in use. 

 

1.5 Goal and Contributions 

The goal of this thesis is to study the use of adaptive antennas in 60 GHz 

Ultra Wide Band (UWB)-OFDM wireless personal network transceivers. It 

has been conducted as follows.  

We have studied the network throughput of the 60 GHz WPANs with an 

extended version of the IEEE 80215.3a MAC supporting the use of 

directional antennas. The antenna controller that we have developed for this 

purpose, makes use of DOA estimation capability to perform neighbour 

discovery. The antenna controller protocol has been implemented into the 

network simulator ns-2 [21] and software simulations have been run for the 

sake of assessing the impact of the antenna pointing error onto the network 

throughput performance for several configurations of antenna directivity. 

With the simulation analysis we have drawn the requirements regarding the 

pointing controller of the array system. To validate the use of the adaptive 

antennas in general, and of our MAC protocol in particular, we have 

compared these requirements against the Cramér-Rao Bound (CRB) for 

DOA estimation of OFDM wireless signals detected by array systems. The 

derivation of this CRB represents the second contribution of our work. The 

CRB on DOA estimation is well documented in the literature for 

narrowband signals and many typologies of array systems, but not much is 

done for wideband sources. Moreover, the available research for wideband 

applications is limited to the model of the zero mean stochastic Gaussian 
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wideband source with the analysis being conducted in the spectral domain  

[22 - 23]. Further research can be done in this direction to cover the gap of 

specific signal formats in lieu of the generic Gaussian source model.  In our 

work we have focused on broadband OFDM sources with a carrier 

frequency around 60 GHz and a channel bandwidth is 1-5 Gbps. Thus, the 

hypothesis of the wideband Gaussian source has been dropped and the CRB 

on the DOA estimation of the OFDM incident signal has been approached 

according to the estimation model of the deterministic signals  [24]. 

 

List of Publications:  
  

[C3] Antonio Fittipaldi, Stan Skafidas, Marco Luise 

IEEE 802.15.3c Medium Access Controller Throughput for Phased Array 

Systems 

 PIMRC 07,  September 2007, Athens, Greece 
 

[C2] Antonio Fittipaldi, Marco Luise 

Game Theory-based Power control Criteria in CDMA Wireless Ad Hoc 

Network 

Med-Hoc-Net 2006, June 2006, Lipari, Italy 
 

[C1] Antonio Fittipaldi, Marco Luise 

Power-Saving and Capacity-Maximizing Power control Criteria in CDMA 

Wireless Ad Hoc Networks 

15
th
 IST Mobile & Wireless Communications Summit, June 2006, 

Mykonos, Greece 

 

1.6 Outline 

This thesis is organized as follows. In Chapter II we review the topic Array 

Processing to fix the background needed to develop our analysis. Two 

models of antenna arrays have been considered throughout the thesis, the 

Uniform Linear Antenna (ULA) model and the uniform circular antenna 

(UCA) model. In Chapter III we first describe the MAC mechanism to 

control phased-antennas with IEEE 802.15.3 MAC and then discuss the 

simulation analysis of our phase array controller throughput which has been 

conducted with the network simulator ns-2. Chapters IV and V are 
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dedicated to the study of the CRB for DOA estimation. In Chapter IV we 

provide the mathematical formalism to develop the analysis and review the 

CRB inferior limit for narrow band signal sources. In Chapter V, we step 

into the domain of the OFDM wideband signals. The general results of this 

section are further analysed in the case of the UWB-OFDM signals of the 60 

GHz PANs.  

Conclusions and considerations for future development conclude the work. 
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Chapter II. Antenna Arrays Fundamentals 
 

 

 

2.1 Array Processing 

In this paragraph we introduce the topic Array Processing with the aim of 

understanding how our work covers the issues that are typical of the array 

processing theory. Moreover, this introduction serves to fix some basic 

assumptions of our analysis. Four main issues of interest related to the array 

processing that we briefly discuss are: 

A Applications 

B Spatial and temporal characteristics of the signal 

C Spatial and temporal characteristics of the interference 

D Array configuration 

E Objective of the array processing 

Array processing plays an important role in many application areas such as 

A1 Radar 

A2 Radio astronomy 

A3 Sonar 

A4 Communications 

A5 Direction-finding 

A6 Seismology 

A7 Medical diagnosis and treatment 

The problems treated in this work falls in the application areas A1, A4 and 

A5. The second issue is the spatial and temporal structure of the signal. In 

the temporal domain we can highlight the following categories 

T1 Known signals 

T2 Signals with unknown parameters 

T3 Signals with known structure (e.g. QPSK) 

T4 Random signals 
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In the spatial domain, the cases of interest are  

S1 Plane-wave signals from known directions 

S2 Plane-wave signals from unknown directions 

S3 Spatially spread signals  

In this regard, this work covers the combinations T2-S2 and T3-S2.  

The third issue is the spatial and temporal structure of the noise (or 

interference). We will always include “a sensor noise” component that 

consists of a white Gaussian noise disturbance that is statistically 

independent from sensor to sensor. A complete treatment of the noise would 

also include external sources of interference and provide for them a 

characterization both temporal that spatial. In this work we neglect this class 

of interference and limit our analysis to the noise having thermal origin only. 

Array configuration consists of two parts. The radiation pattern of the 

antenna array in the far field ( , )θ ϕE  can be expressed as the product of two 

factors, the array factor ( , )AF θ ϕ  and the element factor ( , )θ ϕΕF . The 

array factor depends on the amplitudes and phases of the signals feeding the 

array elements, and on the arrangement of the elements in the array. The 

element factor depends on the physical dimensions and electromagnetic 

characteristics of the radiating elements. The array geometries can be 

divided into three categories: 

G1 Linear 

G2 Planar 

G3 Volumetric (3-D) 

and for each category other classes of sub-division are of interest 

U1 Uniform spacing 

U2 Non-uniform spacing 

U3 Random spacing 

In this work we focus on Uniform Linear Array (ULA) systems and 

Uniform Circular Array (UCA) systems. They belong to the classes G1-U1 

and G2-U1, respectively. 
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As for the Element Factor, for the sake of argument, consider two of the 

mostly widely used antennas, namely the short dipole and a half-wave patch 

antenna. When positioned along the z-axis their element patterns are given 

by  

( ) ( )
( )( )

( )2

cos 2cos
, ,     

sin
EF E half wave dipole

π θ
θ ϕ θ ϕ

θ
= =  

and 

( ) ( ) ( ), , cos sin     
L

EF E half wave patch
π

θ ϕ θ ϕ θ
λ

 = =  
 

 

where 0.49 rL λ ε≈  is the resonant length of a half-wave patch and εr 

indicate the dielectric constant [25]. 

In the following we restrict our analysis to the 2-D case and consider that 

the plane waves lie in the azimuth plane ( )2,π φ . Thus, the phase the 

radiation patterns becomes  

 ( ), 1     EF half wave dipoleθ ϕ =  (2.1) 

and 

 ( ) 0.49
, cos     

r

EF half wave patch
π

θ ϕ
ε

 
=   

 
 (2.2) 

From (2.1) and (2.2) one gets that under the assumption of identical and 

isotropic sensors, the element factors of the sensors are all equal to a 

constant, so that, without loss of generality, such a constant can be supposed 

to be unity and the sensors of the array can be supposed to be half-wave 

dipoles all, without loss of generality. 

The fourth issue of interest is the objective of the array processing theory. A 

representative list of objectives is: 

O1 Detect the presence of a signal in the presence of noise and 

interference 

O2 Demodulate the signal and estimate the information waveform 

in the presence of noise and interference. 
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O3 Detect the information sequence of a digital communication 

arriving over multiple paths 

O4 Estimate the Direction of Arrivals (DOAs) of multiple plane-

wave signals in the presence of noise 

O5 Direct the transmitted signal to a specific spatial location. 

In this work we will focus on O4 and O5.  

In general, the terms that define the detection/estimation problems may vary 

significantly application to application and many combination of the aspects 

listed as above are possible. An example is the temporal model of the signal 

that is processed at the receiver. It may be strictly identified with the 

particular application area. As for the DOA estimation of a plane wave 

impinging on an array system, we may state that in telecommunications 

systems, area A4, the model of the received signal is usually the one of a 

known deterministic source that bears random parameters to estimate such 

as the DOA or the channel phase and amplitude. This is the modelling that 

we have adopted in our work. When instead we deal with physical 

phenomena, like in sonar or seismology, the signal source is usually 

considered as a random process whose description is given in terms of 

power spectral density that contains the parameters to estimate.  

 

2.3 Reference Antenna System 

The antenna array model is composed of M sensors placed at the positions 

ˆ ˆ ˆ,         0,..., -1m m m mx y z m M= + + =p x y z  

The reference coordinate system we refer to is scratched in Figure 2. 1. The 

array sensors are assumes to be isotropic and identical to each other. 

Consider a narrow band plane wave that impinges on the array from the 

direction ( , )θ ϕ , where θ  and ϕ  indicate the azimuth and elevation angle, 

respectively. In the following the angle pair ( , )θ ϕ  is called Angle of Arrival 

(AOA) or Direction of Arrival (DOA) of the plane wave. The assumption of 

a plane wave holds when the signal source is in the far field of the receive 

antenna which implies that the radius of the wave front is much bigger than  
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Figure 2. 1 - Coordinate System 

θ

φ

x

y

z

β̂

 

 

 

 

 

 

 

 

 

the physical size of the antenna array. We indicate the phase propagation 

factor of a wave at the wavelength λ  with β  

( )2 2 ˆˆ ˆ ˆcos sin sin sin cos
π π

φ θ φ θ θ
λ λ

= − + + =β x y z β  

where β̂  denotes a unity vector in the direction of propagation of the plane 

wave. As said our analysis is 2-D and the DOA of the plane wave lies in the 

azimuth plane ( )2,π φ . Thus, the phase propagation factor simplifies 

( )2
ˆ ˆcos sin

π
φ φ

λ
= − +β x y  

The appearance of the elevation angle θ in the formulas that follow is to be 

interpreted as an intended reminder that the concepts we come across are 

true in the volumetric space in general. The phase difference between the 

received signals at the m-th element of the array and the origin of the 

coordinate system ( 0x y z= = = ) is 

m mψ∆ = − ⋅β p  

with ⋅  that indicates inner product. Accordingly, the propagation time of the 

wave to propagate from the array element m to the origin of the coordinate 

system is  

ˆ
m

m
c

τ
⋅

= −
β p

 

where c  is the speed of propagation of the plane wave front.  
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2.4 Narrow Band Antenna Model 

In this work we are interested in studying the use of the antenna arrays in 

telecommunications systems. Thus, We point out the fundamentals of the 

array processing theory for digital communications applications. In the 

following we explain the narrow band antenna model in depth. It models the 

signal reception of narrow band digital information signals by antenna 

arrays. The reference quantity of the digital signal is the signalling interval 

which is to be compared with the propagation time that the wave front of the 

plane wave takes to propagate over the inter element spacing of the array 

system. If one can assume that the signalling interval of narrow band digital 

signal is much larger than the characteristic propagation time, thus, at any 

time epoch t all the sensors in the array system receive the same symbol 

time. Moreover, the signals captured by the array sensors have the same 

amplitude but different phases. These phases are the only quantities of the 

received signal that contain the information of the direction of arrival. Then, 

direction of arrival estimation can be carried out by manipulating the signal 

phases at the array sensors output. This concept is formulated in detail in the 

subsequent sections for the two spatial distributions of array sensors that we 

have study in this work, that is ULA and UCA.  

 

2.5 Uniform Linear Array Model 

The antenna elements of ULA systems are positioned along a linear 

direction, which is the axis x in our study, with a uniform element spacing 

d , Figure 2. 2. The m-th element location is 

ˆ ˆ         0,..., -1m mx md m M= = =p x x  

We indicate with ( )r t  the analytic narrow band impinging signal at the 

origin of the coordinate system. ( )r t  is referred to as the reference signal 

impinging on the array system throughout this document. Its general 

expression is 
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Figure 2. 2 - ULA Reference System 
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 2( ) ( ) cj f tr t t e πµ=  (2.3) 

where cf  is the carrier frequency and ( )tµ  is a narrow band signal bearing 

the data modulation signal. The m-th array element produces the signal 

2 ( ) (2 )
( ) ( ) ( ) ( )c m c mj f t j f t

m m m mr t r t t e t e
π τ π ψτ µ τ µ τ+ +∆+ = + = +≜  

where m represents the element index in the array 0,..., -1m M= . In the 

remainder of this work, the range of m will be omitted. 

If the impinging complex modulation signal ( )tµ  does not vary 

significantly over  

{ } ( 1)
max m

d M

c
τ

−
=  
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which is the propagation time from one end-sensor to the opposite end-

sensor of a plane wave impinging from 0φ = °  or 180φ = ° , the 

simplification  

( ) ( )mt tµ τ µ+ ≃  

holds for all the array elements. For a data-modulated signal this means that  

{ }max m Tτ ≪  

where T  is the signal interval of a data symbol. 

Under this condition, the signal captured by the antenna element m differs 

from the reference signal ( )r t  by a phase offset only 

 
(2 )

( ) ( ) ( )c m mj f t j
mr t t e r t e

π ψ ψµ +∆ ∆=≃  (2.4) 

Indicating with oψ  the phase of narrow band incident signal at the origin of 

the coordinate system, the signal phase at the output of the m-th array 

branch is 

2
cos  m o m o m o omd m

π
ψ ψ ψ ψ ψ φ ψ ψ

λ
= + ∆ = − ⋅ = + = + ∆β p  

The phase offset cosdψ β φ∆ =  between the signals of two adjacent 

sensors is called the electrical angle and contains the DOA information. 

We define the vector of the received signals by the array elements as 

0 1 2 1( ) [ ( ), ( ),..., ( ),..., ( ), ( )]Tm M Mt y t y t y t y t y t− −=y  

whose m-th entry can be expressed as 

( ) ( ) ( ) ( ) ( )mj jm
m m my t r t e n t r t e n tψ− ⋅ ∆= + = +β r

 

( )mn t  is the noise captured at the array element m and is a complex sample 

function from an analytic white Gaussian noise process with power spectral 

density 02N  around cf (see Appendix A). By introducing the steering 

vector or array manyfold of uniform linear arrays of isotropic sensors 

( )ULA φa  

 ( 1)( ) [1, ,..., ]j j M T
ULA e eψ ψφ ∆ − ∆=a  (2.5) 

and defining the noise vector ( )tn  as 

0 1 2 1( ) [ ( ), ( ),..., ( ), ( )]TM Mt n t n t n t n t− −=n  

whose covariance matrix is 
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{ } 0( ) ( ) 2 ( )HE t u N t uδ= = −nR n n I  

the vector ( )ty  of the signals captured at the array sensors can be 

conveniently rearranged as 

 
( ) ( ) ( ) ( )ULAt r t tφ= +y a n

 (2.6) 

The vector notation (2.6) will be used late when we will deal with the DOA 

estimation.  From (2.6), one sees that the noiseless signal at the array output 

( )z t  is 

 
1 1

cos

0 0

( ) ( ) ( ) ( ) ( , )
M M

jm d
m m m

m m

z t w y t r t w e r t fβ φ θ φ
− −

= =

= = =∑ ∑  (2.7) 

The factor ( ),f θ φ  is termed array factor. It represents the ratio of the 

received signal which is available at the array output, ( )z t , to the signal 

input ( )r t , measured at the reference element of the array, as a function of 

the DOA ( ),θ φ . ( ),f θ φ  is lied to the steering vector ( , )ULA θ φa  as 

 ( ), ( , )T
ULAf θ φ θ φ= ⋅w a  (2.8) 

where w is the vector of the weighting coefficients 

[ ]0 1,..., ,...,
T

m Mw w w −=w
 

From (2.8) it is evident that by adjusting the set of weights { }mw it is 

possible to direct the maximum of the main beam of the antenna factor in 

any desired direction ( )0 0,θ φ . This is the basic mechanism on which to 

design antenna controllers that performs beamsteering by exploiting the 

estimates of the DOA of the received signal. This is the approach that we 

have followed in this work and that will be explained later with more details. 

 

2.5.1 Array Factor of ULA Systems 

From the analysis of the array factor one can understand the directional 

properties of the antenna arrays. The parameters of interest are the number 

of antenna elements in the array M and the inter-element spacing d. We 
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rearrange the expression of the array factor given in (2.8) for the case of 

unity weighting coefficients as  

 ( )
1

cos
2

cos
sin

2
,

cos
sin

2

M
j d

M d

f e
d

β φ

β φ

θ φ
β φ

−
 
 
 =
 
 
 

 (2.9) 

In Figure 2. 3a and 1.3b, we have plotted the amplitude of the array factor 

(2.9) normalised to M, for different values of M. It is evident that increasing 

M determines the following effects on the radiation patterns: 

• The width of the main lobe of the radiation pattern reduces. This is 

crucial for applications where smart antennas are employed to track a 

mobile device with a single narrow beam. This point will be 

highlighted later when analysing the system requirements of the 

antenna controller. 

• The number of sidelobes increases. At the same time, the level of the 

sidelobes decreases compared with the one of the main lobe. 

Sidelobes are important in wireless systems communication since 

they represent radiated or received power, in unwanted directions. 

• The number of nulls in the patter increases. In interference 

cancellation applications, the directions of those nulls as well as the 

null depth has to be optimized. 

The inter element spacing d also has a significant impact on the shape of the 

radiation pattern. It is known that the directional properties of the antenna 

array depend on the array size. Increasing the array size by increasing the 

number of sensors M gets better characteristics of the radiation pattern as far 

as its shape and degrees of freedom. But, the array size can be increased also 

by increasing the inter-element separation d. By playing on d we can 

customize the design of antenna arrays. The main observation that we draw 

when analysing the normalized array factor versus d is the appearance of 

replicas of the main beam which are names gratings lobes. In Figures 2.4 

we have plotted the array pattern of a 8-element antenna array for different 
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Figure 2. 3a - Radiation Pattern of ULA Systems with d=λ/2 
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values of d. As is seen when d is 4λ or 2λ , Figure 2. 4a and Figure 2. 4b 

respectively, the array pattern is composed of one main lobe at 90° and a 

few sidelobes. The main lobe of the array pattern is termed boresight. When 

d isλ , Figure 2. 4c, a grating lobe appears at 0°. When d becomes greater 

than λ  more grating lobes appear as shown in Figure 2. 4d. To see this, 

consider that from (2.9), the maxima of the array factor are the solutions in 

the φ  of the equation 

cos
sin 0

2

dβ φ  = 
 

 

which gives  

cos
d

λ
φ =  

whose solutions exist only if d λ≥ . 
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Figure 2. 4a - Polar Radiation Pattern of ULA Systems with d=λ/4 

Figure 2.3b - Radiation Pattern of ULA Systems with d=λ/2 
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Figure 2.4c - Polar Radiation Pattern of ULA Systems with d=λ 

Figure 2.4b - Polar Radiation Pattern of ULA Systems with d=λ/2 
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Figure 2.4d - Radiation Pattern of ULA Systems with d=5λ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the grating lobes differ from the sidelobes because they have the 

same magnitude of the gain as the main lobes. Thus in applications where 

we intend to apply transmit diversity to combat the fading effects we can 

intentionally use antenna arrays designed with d up to 10λ  to exploit the 

angle spread of the fading. In applications where the aim is the array 

directivity only, grating lobes are very difficult to deal with since they 

produce a significant waste of power emitted in unintended directions and 

more interference captured than the sidelobes. As a general rule, in this class 

of applications, d is chosen to be less than λ  but more than 2λ  to limit the 

mutual coupling effects among the sensors. In practice, 2λ is the usual 

inter-element distance and an array having the elements spaced of 2λ  is 

said standard array. In the following we will refer to standard arrays unless 

otherwise specified. 
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Figure 2. 5 – 8-element UCA Reference System 
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2.6 Uniform Circular Antenna Model 

Uniform Circular Array systems are composed of sensors which are 

disposed along a ring with a uniform angle separation of 2 Mπ , Figure 2. 

5. The m-th sensor position is  

ˆ ˆ(cos sin ) m m mR φ φ= +p x y  

where R is the radius of the circle and mφ  is the azimuth angle of the m-th 

sensor 

2
  m m

M

π
φ =  

 

 

 

 

 

 

 

 

 

 

 

 

With d that indicates the inter element distance, the relationship between R, 

M and d is 

 
2

2

1 cos

d
R

M

π
=

  −     

 (2.10) 

As with ULA systems, indicating with ( )r t  the analytic narrow band 

incident signal at the origin of the coordinate system and with oψ its phase, 

if it is possible to assume that  

( ) ( )       mr t r t mτ− ∀≃
 

which happens if ( )r t  does not vary significantly over a time lag of  
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{ } 2
max m

R

c
τ =  

the noisy signal available at the output of the m-th array element can be 

written as  

( ) ( ) ( )mj
m my t r t e n t

− ⋅= +β r
 

whose phase is 

2
(cos cos sin sin )m o m o m mR

π
ψ ψ ψ φ φ φ φ

λ
= − ⋅ = + +β p  

The steering vector of UCA systems can be defined as   

 

( )

( )

0

1

cos

cos

( )

M

j R

UCA

j R

e

e

β φ φ

β φ φ

φ
−

−

−

 
 

=  
 
  

a ⋮  (2.11) 

and the vector ( )ty of the signals available at the array output can be 

expressed similarly to (2.6) 

( ) ( ) ( ) ( )UCAt r t tφ= +y a n
 

 

2.6.1 Array Factor of UCA Systems 

The array factor of ULA systems with unity weighting coefficients is 

 
( )

1
cos

0

( , ) m

M
j R

m

f e
β φ φθ φ

−
−

=

= ∑  (2.12) 

The advantage of a circular array is that it creates only one man beam that 

can be swept fully around the circle. Similar to linear arrays, the number of 

elements in the array determines the width of the meanbeam and the element 

spacing determines the entity of the sidelobes. In ULA system the choice of 

keeping the element spacing lower than half a wavelength is dictated by the 

appearance of grating lobes. In UCA systems a similar choice is made in 

order to limit the pattern ripple [26], a possible criterion is to keep below 1 

dB. The pattern ripple is measured by the ratio of the maximum array factor 

to the minimum array factor. The more the pattern ripple the more the array 

pattern deviates from the omnidirectional radiation when the sensors are fed 
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Figure 2. 6 - Polar Radiation Pattern of a 8 element UCA with kR=5.2 

M kR Ripple dB 

8 4.10469 0.4 

12 6.0691 0.1262 

16 8.05164 0.01861 

 
Table 2. 1– Ripple values for the sensor arrangement 2d λ=  

with equal phases and amplitudes as seen in Figure 2. 6 for a 8 element 

array with 5.2kR = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pattern ripple of the array of Figure 2. 6 amounts to  

2
1

10log 8
0.4

dB
 
 
 

≃  

In Table 2. 1 we have reported the calculated ripple by using (2.12) as 

resulting from the sensor arrangement 2d λ= . 
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As is seen the more M, the less the ripple. For M less than 8 instead, d has 

to be less than 2λ . For instance with 4 elements, 0.35d λ=  gives 0.97 dB 

ripple. 

 

2.7 Antenna Directivity. 
The power density, having units of W/rad

2
, for a particular direction ( ),θ φ  

is given by ( , )U θ φ . It is of practical interest the relationship between the 

power density ( , )U θ φ  and the array factor ( , )AF θ φ  so as to derive the 

antenna directivity from the geometry of the array system. ( , )U θ φ  as a 

function of the array factor ( , )AF θ ϕ  is 

 ( ) ( ) 2
, ,U AFθ φ θ φ=  (2.13) 

The total power transmitted in all directions is 

( )
2

0 0
, sinradP U d d

π π

φ θ
θ ϕ θ θ φ

= =
= ∫ ∫  

The average power density, aveU , is  

 ( )
2

0 0

1
, sin

4 4

t
ave

P
U U d d

π π

φ θ
θ ϕ θ θ φ

π π = =
= = ∫ ∫  (2.14) 

When the antenna transmits power equally in all directions, the antenna is 

said to be isotropic. Isotopic antennas are often used as a reference case. 

Antenna arrays have the ability to concentrate the radiated power in a 

particular angular direction in space. This ability is measured by  the 

directive gain defined as  

 ( ) ( ),
,

ave

U
D

U

θ φ
θ ϕ =  (2.15) 

The directive gain in the direction of the maximum radiation density is 

referred to as the directivity, D , and is given  

( ){ }
,

max ,

ave

U

D
U

θ φ
θ φ

=  

The antenna gain is instead given by 



 

 29 

 

( ) ( )4 ,
,

in

U
G

P

π θ φ
θ ϕ =  

where inP  is the total input power to the array. By defining the antenna 

efficiency η, which accounts for losses, as 

rad

in

P

P
η =  

it follows that  

( ) ( ), ,G Dθ φ η θ φ=  

In our work, the antenna is assumed to be lossless and perfectly matched, so 

as we will interchangeably refer to the antenna gain or antenna directivity. 

 

2.7.1 Directive Gain of ULA Systems 

The directive gain of ULA systems can be found as follows. We first 

substitute (2.9) in (2.13) to write the power density. We then substitute 

(2.13) in (2.14) and (2.13)-(2.14) in (2.15). The final expression is 

 ( )
2 2

2 2 2

0 0

cos sin cos sin
4 sin sin

2 2
,

cos sin cos sin
sin sin sin

2 2

M d d

D
M d d

d d
π π

β φ θ β φ θ
π

θ φ
β φ θ β φ θ

θ θ φ

   
   
   =

   
   
   ∫ ∫

  

(2.16) 

2.7.2 Directive Gain of UCA Systems 

The derivation of the directive gain of UCA systems is similar to ULA 

systems with the only difference that (2.9) replaces (2.12). The directive 

gain is 

 ( )

( )

( )

2
1

sin cos

0

2
1

2 sin cos

0 0
0

4

,

sin

m

m

M
j R

m

M
j R

m

e

D

e d d

β θ φ φ

π π β θ φ φ

π

θ φ

θ θ φ

−
−

=

−
−

=

=
∑

∑∫ ∫
 (2.17) 
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2.8 Beamsteering 

Beamsteering is the simplest form of beamforming. It can be achieved by a 

delay-and-sum beamformer with all its weights equal in magnitude and the 

phases selected to steer the antenna boresight in any wanted direction 0φ  

known as the look direction. As an example, this goal can be achieved with 

these choices of weighting coefficients 

 0cos1 j md
mw e

M

β φ−=  (2.18) 

and 

 ( )0cos1
mj R

mw e
M

β φ φ− −=  (2.19) 

for ULA and UCA systems respectively. 

 

2.8.1 Beamsteering of ULA Systems 

To see the effect of this operation we write the array factor or equivalently 

the directive gain of ULA systems by introducing the weighting coefficients 

(2.18) in (2.8). The resulting expression of the array factor is 

  

 ( )
( )

( )

( )
0

0

1
cos cos

2

0

cos cos
sin

2
,

cos cos
sin

2

M
j d

M d

f e
d

β φ φ

β φ φ

θ φ
β φ φ

−
−

 −
 
 =
 −
 
 

 (2.20) 

which is straightforwardly comparable with (2.9). In Figure 2. 7 we have 

plotted (2.20) for 0 30φ = °  and 0 60φ = ° for an 8-element linear-phased 

standard array. In particular when 0 0φ = °  the array is said end-fire whereas 

when 0 90φ = °  the array is said broadside. Figure 2. 8 depicts the directive 

gain of a standard linear-phased array with weighting elements (2.18) in the 

plane x-y and φ  ranging in [0°,180°), for M equal to 8 (9 dBi), 12 (10.79 

dBi) and 16 (12 dBi) and for three values of the scanning angle 0φ , 0°, 45° 

and 90°, respectively. As said, increasing the number of elements 

determines a higher antenna directivity and a narrower mainlobe 

beamwidth. We point out that the reduction of the mainlobe beamwidth due 
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to an increasing M has a different importance if analysed versus the pointing 

direction 0φ . In fact in general, for a fixed M, the beamwidth of uniform 

linear antenna arrays is narrower if the array is broadside and becomes 

broader outwards with the maximum at end-fire. Such a variation is more 

noticeable with M that increases. It can be observed that an increase of M up 

to 16 leaves the beamwidth still large if 0 0φ = °  whereas it gives a sharp and 

narrow mainlobe if 0 90φ = ° . The behaviour of the beamwidth for ULA 

systems is treated in more details in the next section.  

The steering process is similar to steering the array mechanically in the look 

direction, except that it is done electronically by adjusting the phases of the 

signals at the array elements outputs. This later is also referred to as 

electronic steering, and phase shifters are used to adjust the phases. The 

phase offset form one element to the next in ULA systems is 

0cosπ φ  

which amounts to 0° for broadside and to π for end-fire.  

If 0φ  is the AOA of the far field source, we want to point the antenna in the 

AOA of the impinging signal to receive the signal. Said 0( )ULA φa  the 

steering vector of the ULA system in the AOA of the impinging source, the 

weighting coefficients vector (2.18) is  

0

1
( )ULA

M
φ∗=w a  

The array with these weights has unity response in the look direction, that is, 

the mean output power of the processor due to a source in the look direction 

is the same as source power. Assume that the data modulation signal ( )tµ  

in (2.3) has mean power pµ, from (2.7) one gets the mean output power  

( ) ( ) ( )HP E z t z t pµ = ⋅ = w  

Thus, the mean output power of the beamformer steered in the look 

direction is equal to the power of the signal in the look direction. In the 

special case where the system is dominated by uncorrelated noise, 2

nσ=
n

R I , 

and no interference exists in the look direction, this beamformer provides 

maximum SNR. In fact, the noise output power is 
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0

φ =0°, 45°, 90° 

Figure 2. 7 - Beamsteered 8-element standard ULA System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 33 

 

2
T n

M

σ
= =

n n
P w R w  

The processor with unity gain in the direction of the source has reduced the 

uncorrelated noise by a factor M, yielding an output SNR 

2out

n

p
SNR M

µ

σ
=  

when the input SNR is  

2in

n

p
SNR

µ

σ
=  

This beamformer provides an array gain, which is defined as the ratio of the 

output SNR to the input SNR, equal to the number of elements in the array 

M.  

This beamformer requires some prior knowledge about the look direction 0φ  

to be applied. In this work we study the CRB for DOA estimation and the 

impact of the accuracy of those estimates onto the goodput performance of 

phased array controllers that use DOA estimates for beamsteering. 

 

2.8.2 Beamsteering of UCA Systems 

In this section we analyse the normalized array factor of UCA systems with 

the substitution of (2.19) in (2.12) for beamsteering with an inter element 

separation of half a wavelength. Figure 2. 9a refers to a 8-element array 

pointing two directions, 0 45φ = °  and 0 22φ = ° , respectively. We have also 

plotted the case of a 12-element array to show the increase in directivity due 

to more elements in the array, Figure 2. 9b. For the 8 element array we note 

the presence of a relevant back lobe compared to the 8-element standard 

linear array of Figure 2. 7. As said UCA systems can scan all the azimuth 

circle with only one beam. However we note that the relative direction of 

the beam compared to the location of the sensors can cause a nonsymmetric 

pattern and the appearance of some relatively large sidelobe. For instance, in 

Figure 2. 9a  one notices that the sidelobe at 150° of the array pattern when 

0 45φ = ° becomes bigger when the look angle moves towards 22°. 
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Figure 2. 9b - 12-element UCA System steered at 45° 

Figure 2. 9a - 8-element UCA System steered at 45° 
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Figure 2. 10a - Beamwidth of ULA systems as a function of d/λ 

2.9 Half Power Beamwidth of ULA Systems  

The half-power beamwidth (HPBW) or simply beamwidth is defined as: “In 

a plane containing the direction of the maximum of a beam, the angle 

between the two directions in which the radiation intensity is one-half the 

maximum value of the beam”. Thus the term beamwidth is implicitly 

reserved to indicate -3dB beamwidth. An important indication provided by 

the beamwidth if the resolution capacity of the antenna that is the capacity 

of the antenna to distinguish between to sources. Two sources separated by 

angular distances equal or greater than HPBW can be resolved [27]. 

A general formula for the beamwidth of a linear-phased array is [28] 

 1 1cos cos 0.443 cos cos 0.443o oHPBW
Md Md

λ λ
φ φ− −   = − − +      

 (2.21) 

which is valid for a wide range of scanning angles but not for end-fire. In 

Figures 2.10a and 2.10b we notice the same behaviour for the beamwidth 

when we increase d and M. Figure 2.10c demonstrates that the beamwidth 

of a linear-phased array of a given size is not constant but rather it depends 

on the scanning angle. 
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Figure 2.10b - Beamwidth of ULA systems as a function of M 
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Figure 2.10c - Beamwidth of ULA systems as a function of the look angle φ  
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Chapter III. Simulation Analysis with IEEE 
802.15.3c MAC 
 
 
 
 

3.1 General Description of IEEE 802.15.3 

In this section we provide a brief description of the IEEE 802.15.3 standard.  

In that, we have picked up those features of the standard that serve to set the 

background for the explanation of the design of the IEEE 802.13.3 phased 

array controller throughput, which is our aim in this chapter. 

A piconet is a wireless ad hoc data communication system which allows a 

number of devices (DEVs) to communicate with each other. A piconet 

differs from other data networks in that communications are confined to a 

limited area around a person or an object. The target radio coverage of the 

mm-wave WPANs goes from desktop and body applications to the in-room 

like applications. A 802.15.3-based piconet consists of several components. 

The main are shown in Figure 3. 1. One DEV is required to assume the role 

of the coordinator of the piconet (PNC). It provides the basic timing for the 

piconet with the beacon. Additionally, the PNC manages the QoS 

requirements, power saving modes, and access control to the piconet. 

Because 802.15.3 networks form without pre-planning and only for as long 

as the piconet is needed, this type of operation is classified as an ad hoc 

network. 802.15.3 specifies allocation of a subsidiary piconet generally 

referred to as dependent piconet. In our work we have neglected allocation 

of dependent piconets. 

Timing in the 802.15.3 piconet is based on the superframe, which is 

illustrated in Figure 3. 2. The superframe is composed of three parts: 

• The beacon is used to set the time timing allocations and to 

communicate management information for the piconet. 
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Figure 3. 2 - Superframe composition 

Figure 3. 1 - Piconet components 
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•  The contention access period (CAP) is used to communicate 

commands and/or asynchronous data if it present in the superframe. 

• The channel allocation period (CTAP) is composed of channel time 

allocations (CTAs), including management CTAs (MCTAs). CTAs 

are used for commands, isochronous streams and asynchronous data 

connections. 

The CAP uses CSMA/CA for the medium access. The CTAP uses a 

standard TDMA protocol where the DEVs have specified time windows. 

MCTAs are either assigned to a specific source /destination pair and use 

TDMA for medium access or shared CTA that use slotted aloha protocol. In 

this work MCTAs are neglected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All data in the 802.15.3 piconet data are exchanged in a peer-to-peer manner. 
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There three methods for communicating data among DEVs in a piconet: 

1) Sending asynchronous data in the CAP, if present. DEVs can send small 

amounts of data without having to allocate channel time. 

2) Allocating channel time for isochronous streams in the CTAP. This kind 

of communication is requested by a DEV that needs time allocation on a 

regular basis. If the resources are available the PNC reserves a CTA for 

the DEV. The isochronous CTAs can be either static or pseudo-static. If 

a DEV misses a beacon, the DEV cannot use the CTA in the next 

superframe if the CTA is of the first type. If the CTA request is of the 

second type, the device can still use the CTA in the subsequent 

superframe up to a mMaxLostBeacons of missed beacons. 

3) Allocating asynchronous channel time in the CTAP. Unlike isochronous 

allocation, it corresponds to a request for a total amount of time needed 

to transfer a given bulk of data. The PNC schedules channel time for this 

communication according to the current channel time requests. 

In this work, we have taken into consideration isochronous communications 

only, and pseudo-static CTAs only. 

To verify the delivery of frame the standard specifies three types of ACKs 

to enable different applications. 

1) The no-ACK policy is appropriate for frames that do not require 

guaranteed delivery where the retransmitted frame would arrive too late 

or where an upper layer protocol is handling a the ACK and the 

retransmission. 

2) The Immediate-ACK (Imm-ACK) policy is an ACK process in which 

each frame is individually acknowledged after the reception of the frame. 

3) With the Delayed-ACK (Del-ACK) frames are acknowledged in groups. 

The ACK is sent when requested by the source DEV. This ACK policies 

decreases the overhead with respect to the Imm-ACK while ensuring t 

the source DEV the verification of a successful transmission. 

In this work we have considered the Imm-ACK policy only.  
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Table 3. 1- MAC related System Attributes 

As seen, the MAC mechanisms included in this standard make it sufficiently 

flexible to operate with a wide range of wireless applications having 

different QoS requirements, bandwidth demands and traffic types. Table 3. 

1Errore. L'origine riferimento non è stata trovata. shows how this MAC 

standard fits the wireless applications that are envisaged to be operative in 

the 60 GHz band. 

 

 

 
# Application MAC Related Systems Attributes 

1 

Uncompressed HDTV 

Video/Audio streaming 

[DVD players and other 

power-line operated 

devices] 

a) Isochronous 

b) High throughput efficiency 

c) Point-to-Point 

d) Support for high gain antennas for Data Transmission 

e) Device discovery 

f) Moderate latency 

g) Minimum reserved bandwidth 

2 

HDTV Video/Audio 

streaming [video 

camera/mobile devices 

and other battery 

operated devices] 

a) Isochronous 

b) High throughput efficiency 

c) Maintain link throughput while in motion jitter 

d) Point-to-Point 

e) Support for moderate gain antennas for Data Transmission 

f) Automatic device discovery 

g) Moderate latency 

h) Minimum reserved bandwidth 

i) Multiple nearby data transmissions 

3 

Internet bulky music and 

video downloading 

[computing devices] 

a) Asynchronous 

b) High throughput efficiency 

c) Point-to-Point 

d) Support for moderate gain antennas for Data Transmission 

e) Device discovery (Automatic preferred) 

4 

Internet bulky music and 

video downloading 

[mobile devices] 

a) Asynchronous 

b) High throughput efficiency 

c) Point-to-Point 

d) Support for moderate gain antennas for Data Transmission 

e) Device discovery (Automatic preferred) 

f) Multiple nearby data transmissions 

g) Power saving mode 

5 

Internet small size file 

transfer (email, web, 

chat) 

a) Asynchronous 

b) Point-to-Point 

c) Support for moderate gain antennas for Data Transmission 

d) Device discovery (Automatic preferred) 

e) Multiple nearby data transmissions 

f) Power saving mode 

g) Fast connect 

6 

Local file transfer for 

printing, document and 

small size file 

a) Asynchronous 

b) Point-to-Point 

c) Support for moderate gain antennas for Data Transmission 

d) Device discovery (Automatic preferred) 

e) Multiple nearby data transmissions 

f) Power saving mode 
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7 Local file transfer for 

bulky music and video, 

point-to-point connection 

(photo/video camera and 

photo/video handy 

phone, mp3 player) 

a) Asynchronous 

b) Point-to-Point 

c) Support for moderate gain antennas for Data Transmission 

d) Device discovery (Automatic preferred) 

e) Multiple nearby data transmissions 

f) Power saving mode 

8 

Wireless docking station 

a) Isochronous 

b) High throughput efficiency 

c) Maintain link throughput while in motion jitter 

d) Point-to-Point 

e) Support for moderate gain antennas for Data Transmission 

f) Device discovery (Automatic preferred) 

g) Moderate latency 

h) Minimum reserved bandwidth 

i) Multiple nearby data transmissions 

9 

Video supply, 

Environment bus, train, 

airplane 

a) Isochronous 

b) High throughput efficiency 

c) Broadcast, multicast and unicast capable 

d) Minimum reserved bandwidth 

e) QoS support 

f) Low delay jitter (<100 ms) 

g) Moderate latency (< 100 ms) 

h) Support of asymmetric data rates and gaming 

i) Cumulative acknowledgements and unacknowledged streaming 

j) Infrastructure mode (non ad-hoc) 

k) Secondary (fallback) PHY for 100% coverage and uplink 

 

 

 

3.2 Adapting IEEE 802.15.3c MAC for the Use of Phased Array Antennas 

In this section we describe the extension of the IEEE 802.15.3 MAC for the 

use of phased array antennas. The array system does include the omni 

directional operating mode. Omni operations are directly involved into this 

directional protocol and ensure compatibility with devices that are not 

equipped with array antennas. For this reason, our protocol can be thought 

as an extension to the PHY-MAC functionalities of IEEE 802.15.3c when 

directional antennas are used. In the following we first explain the basic 

mechanism of our neighbour discovery protocol which is based on DOA 

estimation of the incoming frames. We then illustrate how this mechanism 

is employed to establish both PNC-DEV and DEV-DEV wireless links. 

 

3.2.1 DOA Estimation on the PHY Preamble 

In this section we show a revisited modelling approach first proposed in 

[29]  for directional antenna adaptation. Figure 3. 3 shows the timeline of a 
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Figure 3. 3 - Data frame exploitation for antenna adaptation 

received frame. It composes of a PHY part and a MAC part. DOA 

estimation can be carried out on the preamble of the PHY of the received 

frame. The physical preamble is assumed to be a known OFDM long 

training sequence added to aid receiver algorithms of synchronization, 

carrier-offset recovery and channel equalization. In particular, as far as the 

DOA estimation is concerned, we simplify the modelling of a training 

sequences as one OFDM symbol having both the number and the positions 

of the pilot subcarriers known. DOA estimation is accomplished in the PHY 

preamble time Tpp and the DOA estimate is used to point the main beam in 

the direction of arrival of the frame during the remainder of the frame 

receive time Tframe - Tpp. If frame reception is successful, the DOA estimate 

is cached and the DEV switches to the narrow beam communication. The 

DEV can use the DOA just acquired either to reply to the sending DEV 

directionally or as the expected DOA of the next frame from the same 

source. In this second case then, the next frame is received with a receive 

antenna already beam steered to the DOA of the frame. 

 

 

 

 

 

 

It should be noted that: 

1) DOA estimation with no DOA information cached occurs during the Tpp. 

of the first frame of a wireless communication or after a protocol reset, 

for instance due to the loss of the direction toward the intended DEV. 

With reference to Figure 2. 2, DOA estimation in these conditions is 

actually performed on the signals vector y at the output of the array 

sensors, before the multiplication by the weighting elements w. 

2) DOA estimation performed with a receive antenna already pointed 

benefits from a maximum SNR as explained in Section 1.9.1. In this 
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case the signals vector used for estimation is z at the output of the array 

sensors after the multiplication by the weighting elements w. 

3) DOA estimation could be carried out, let us say refreshed or refined, 

during the symbol times composing Tframe - Tpp. Concentrating the 

estimation in Tpp can be thought as representative of the performance 

estimation achievable on whatever number of symbols in the interval 

Tframe. 

 

3.2.2 Frame Driven Beamsteering in IEEE 802.15.3c  MAC  

In a piconet there are two kinds of wireless links. One is  the PNC-DEV link, 

The other id the DEV-DEV link. 

 

• Antenna steering on beacon time. All the DEVs set their local timing 

information upon receiving the beacon. Beacon reception serves as a 

time reference for clock synchronization in the network. Beacon 

transmission is intrinsically broadcast to keep the differences of the 

instants at which the beacon is received at the DEVs within the guard 

intervals fixed by the standard and avoid time differences due to the 

protocol. The wireless link PNC-DEVs as far as the beacon 

transmission is concern is omni at the PNC and can be directional at 

the DEVs. That is, the PNC-DEVs links antenna gain is exploited at 

the receiver only. To overcome the link gain asymmetry, the MAC 

beacons are transmitted at a lower rate. The lower rate transmission 

rate results in a lower SNR requirement that with less antenna gain in 

the link should end up with the same probability of correct frame 

reception. This mechanism represents a form of MAC-PHY cross-

layer optimization that can be implemented with the addition of a few 

PHY-SAP (Service Access Point) primitives. For instance consider the 

current IEEE 802.15.3 PHY specification. To achieve 8%FER ≤ with 

a transmission rate of 55 Mb/s and 64-QAM-TCM, we need 
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20 SNR dB≥ . Assume that we transmit the MAC beacon at 22 Mb/s 

using DQPSK. The same FER of 8% is achieved with 13 SNR dB≥ . 

That is we can lose about 7 dB in antenna gain. Using the lower 

transmission rate causes a throughput overhead since we need more 

time to transmit the beacon per superframe. The throughput reduction 

is negligible anyway because the increase in beacon transmission time 

is a very small portion of the overall superframe. During the reception 

of the beacon frame all the DEVs perform DOA estimation on the 

PHY training sequence of the beacon. The DOA estimates drive  beam 

steering to carry out beacon reception. If reception is successful the 

DOA estimate is used as the expected DOA of the beacon of the 

subsequent superframe. 

 

• Antenna steering on data frame and ACK. The DEV-DEV wireless 

link can be directional in both directions. The mechanism to establish a 

directional-directional link during the data-ACK frame exchange is 

explained with the aid of Figure 3. 4. Transmit devices do not know 

the angular position of the intended receivers at the start. So a transmit 

DEV, DEV1, starts by sending a training frame omni directionally  to 

DEV2 at a lower data rate. This operation has been denoted with E1 in 

Figure 3. 4. The receive DEV, DEV2, estimates the DOA of the frame 

on the PHY preamble of the data frame. The DOA estimate becomes 

the pointing direction of the antenna boresight during the remaining 

frame receive time, and in case of successful frame reception also the 

pointing direction to acknowledge DEV1 directionally. This sequence 

of operations is indicated with E2 in Figure 3. 4. DEV1 estimates the 

DOA toward DEV2 upon receiving the ACK MAC frame and, if the 

reception succeeds, uses it for the directional transmission to DEV2 

during the subsequent CTA. E3 is the conclusion of the DEV-DEV 

handshake ending with the establishment of a directional-directional 

wireless link. 
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DEV 1

DEV 2
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E3

Directional-Directional

Communication

Figure 3. 4 - Directional-Directional communication in DEV-DEV link 

 

 

 

 

 

 

 

 

 

In principle the directional-directional link may take place after one DATA-

ACK exchange only. For the PNC-DEV it would be after one beacon frame 

only, namely in one superframe time only. Indeed, how fast and successful 

this strategy is depends on the capacity of estimating the DOA. To have a 

comparison regarding the potential speed of acquiring the directional 

communication, let us make the example of a DEV that enters the network 

and scans the space around directionally in search of the beacon. Indicating 

with / 2beamφ π the probability that the DEV points a particular direction 

with a beam of beamwidth beamφ , the probability P that the DEV points the 

direction of the PNC when the PNC is sending the beacon is  

sup2

beam beacon

erframe

T
P

T

φ
π

=  

Since the ratio of the beacon time beaconT  to the superframe time superframeT  is 

likely a very small value, P is a very small quantity indicating that lots of 

superframe would be needed to acquire the direction to the PNC on average. 

Figure 3. 5 shows the flowchart of a DEV1 having a packet to transmit to 

DEV2. If DEV1 does not receive the Imm-ACK, it retransmits the 

unacknowledged data frame by performing beamsteering with the last DOA 

estimate available (if any) for a maximum number of times 

retry_count_limit. After retry_count_limit retransmissions the data frame is 

discarded and the DOA estimate (if any) is assumed to be invalid. The 

antenna of the DED1 is then unlocked and a switch to the omni hearing 
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Figure 3. 5 - Flowchart of a DEV having a packet to transmit 

occurs. Failure in delivering a MAC frame may be due to an estimation 

error of either or both transmit and receive DEVs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Simulation Background  

The MAC protocol for phased array antenna controllers described in 

Chapter II has been studied by means of computer simulations carried out 

with the network simulator ns-2 [21]. In this section we describe the model 

of the directional wireless link that we have simulated. The main 

assumption is the existence of a dominant LOS component and the absence  

co-channel interference. Such a channel model holds at 60GHz for room 

applications with no strong reflectors [8]. If a LOS exists and under the 

reasonable assumption that the DOA estimator used by the antennas is 

unbiased, the DOA estimates are noisy estimates of the LOS direction. The 

estimation error represents an alignment error to the LOS direction between 

transmitting and receiving antennas as can be seen with the aid of Figure 3. 
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Figure 3. 6 - Geometrical orientation of transmitting and receiving antennas 

for Friis propagation equation. 

( ),r rφ θε ε− −

( ),t tφ θε ε− −

( ), ( , )t t t rP G φ θ ( ), ( , )r r r rP G φ θ

6. The alignment error has been modelled as a Gaussian random variable 

with a zero mean and a given variance that we have indicated with 2

G
σ . 

Hereafter, the DOA estimation is referred to as the Gaussian DOA estimator 

(GDOA) which represents the generator of a Gaussian error indeed. 

We notice that the abstraction of schematic DOA estimation processing 

allows the generalization of the use of phased array antennas with 802.15.3 

MAC regardless of the PHY. Such a simplification makes sense in that it 

enables us to gain insight into the relationship between the pointing 

accuracy and the antenna beamwidth/directivity of the antennas, and may  

 

 

 

 

 

 

 

serve as a reference analysis for specific DOA estimation algorithms and 

specific signal modulation techniques. 

The propagation equation corresponding to our link model is given by 

 ( ) ( ) r( ) , , Pt t t r rP PL L G Gφ θ φ θ=  (3.1) 

(3.1) relates the power delivered to the load of the receiving antenna Pr to 

the input power of the transmitting antenna Pt. The term ( )PL L  is the 

average path loss measured at the distance L. ( )PL L  as a function of the 

distance L is 

 ( )[ ] �

0

0 10 0

0free space path loss at
 reference distance L

10 log ;           
L

PL L dB PL n L L
L

 
= + ⋅ ⋅ ≥ 

 
 (3.2) 

In our simulations the parameters of (3.2) have been taken from a 

measurement campaign regarding the mm-waves [30]. 
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The reference distance 0L  is 1 m, the corresponding path loss 0PL  is 71.1 

dB and the path loss exponent n equal to 1.53. ( ),t tφ θ and ( ),r rφ θ in (3.1) 

are the reciprocal angles of view of the antennas. For instance rφ is given by   

 
� �

 anzimuth of LOS error component with
  Gaussian statistics

r LOS rφφ φ ε −= +  (3.3) 

In (3.3) LOSφ  is assumed to be a known quantity whereas rφε −  is generated 

by the GDOA. 

 

3.4 Simulations Analysis  with ULA Systems 

Six nodes, five DEVs communicating to a PNC, compose the network. The 

DEVs are allocated the same CTAP duration. The main simulation 

parameters are shown in Table 3. 2. In particular we have simulated a 

physical capacity of 192 Mbps capable of a 157 Mbps throughput with 

802.15.3 MAC. The PCN has been placed at the center of the network and 

the DEVs are located at the same radial distance L but with a progressive 

angle 0iφ  with respect to the PCN, Figure 3. 7. The distance L varies from 1 

up to 5 meters. To simplify, we have assumed that the antenna of any device 

(DEVi’s x-axis) is parallel to the PCN’s antenna so that the PCN and the 

DEVi see each other with look angles, 0iφ and 0iφ  respectively, that give the 

same antenna patterns, see Table 3. 3. The metrics that we have investigated 

are the mean value, reported in Figures 3.8a,b,c and 3.9a,b,c, and the 

goodput standard deviation which is reported in Figures 3.10a,b,c, of all the 

PCN-DEVi links recorded separately. Simulation results are shown for Gσ  

of 4° and 5°, respectively. Statistics have been acquired by running 200 

simulations of 20 seconds each, per network configuration. It is worth 

recalling that increasing values of 0φ  and M correspond to increasing 

antenna directivity, i.e. decreasing values of beamwidth. From now on, we 

will mainly refer to 0φ  and M to indicate the antenna directivity. 
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From the figures regarding the goodput mean value, it emerges that: 

i) Only the link PCN-DEV1, which corresponds to the end-fire pointing 

direction 0 0φ = ° , always achieves the maximum goodput of about 30.85 

Mbps regardless of M, the distance L and the variance of GDOA 

estimator. 

ii) For values of the look angle far from end-fire, 0 30φ ≥ ° , the mean 

goodput decreases progressively as 0φ  grows. This is noticeable for any 

M, L and Gσ  

 

 

Figure 3. 7 - Device placement 

DEVi 0i
φ  

0i
φ  

1 0° 180°  (0°) 

2 30° 210° (30°) 

3 45° 225° (45°) 

4 60° 240° (60°) 

5 90° 270° (90°) 

 

Table 3. 3 - Look direction PNC-DEVi 

Table 3. 2 - Main simulation parameters 

short interframe space 2.304 µs transmit power 3 mW 

guard time 72 ns rx threshold -70 dBm 

retry_count_limit 4 packet length 2000 Bytes 

path loss exponent 1.53 transport agent UDP 

reference distance , d0 1 m CTAP duration 2 ms 

path loss at d0 71.1 dB packet error rate 1% 

channel bandwidth 500 MHz traffic source CBR 

central  beamwidth freq. 60 GHz channel capacity 192 Mbps 
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Figure 3.8c - mean goodput, 
Gσ = 4°, M=16 
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iii) For look angles far from end-fire, the mean goodput diminishes as L 

goes from 1 to 5 meters. This happens for any M and both values of Gσ . 

iv) For a given GDOA estimator variance, we note that increasing the 

antenna size M causes an increasing goodput loss. For instance, with 

0 90φ = °  and L=5 the goodput mean value passes from 28.59 Mbps in 

Figure 3.8a where M=8 (low directivity) to 20.4 Mbps in Figure 3.8c 

where M =16 (high directivity). Again, this behaviour is clear for look 

angles far from end-fire. 

v) As expected, the GDOA estimator variance affects the goodput. By 

comparing Figures 3.9.a,b and c with the corresponding Figures 3.8a,b 

and c, one notices that one degree more of standard deviation leads to a 

goodput loss which increases as the antenna directivity M increases. For 

instance with M=8, 0 90φ = °  and L=5 the goodput mean value passes 

from 28.59 Mbps in Figure 3.8a to 25 Mbps in Figure 3.9a. With M=16, 

0 90φ = °  and L=5 the goodput from 20.4 Mbps reduces to 15.68 Mbps, 

Figures 3.8c and 3.9c respectively. 

From the analysis of the goodput standard deviation we derive observations 

compliant with the mean value analysis: 

i) The goodput standard deviation increases progressively with 0φ going 

from 0° to 90°, for any value of M and L.  

ii) the goodput standard deviation increases with L, for any M and 0φ . 

iii) For any fixed geometry ( 0φ ,L) the goodput standard deviation increases 

as M increases. 

iv) As expected, simulations run with other values of Gσ  confirm that the 

goodput standard deviation increases as the GDOA estimator 

performance decreases. 

Simulations have shown that Gσ  has to be smaller than 2.8° and 2.3° to 

limit the goodput loss to less than 5% of the maximum goodput at a distance 

L=5 m for M=12 and M=16, respectively. 
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The indication that we draw is that high gain directional antennas expose the 

wireless link to significant goodput degradations in terms of mean value and 

fluctuations when the alignment error exceeds the requirement. This is the  

rule except for pointing configurations close to the end-fire. In general, the 

grater the antenna bandwidth, the higher and more stable the link goodput. 

Hence, the performance requirements of any algorithm for DOA estimation 

can be fixed by referring to the broadside pointing. 

 

3.5 Simulations Analysis  with UCA Systems 

Regarding UCA systems, we have conducted a similar investigation to ULA 

systems. In particular, bearing in mind that for these latter a mispointing 

standard deviation around 2°-3° represents the upper boundary to achieve a 

network throughput negligibly below the maximum throughput of the ideal 

conditions of no pointing error, we have replicated the same analysis to 

compare the same kind of boundary for UCA against ULA. Figure 3. 11a 

and b show the average goodput of UCA systems composed of 8 and 16 

elements, respectively. The simulation parameters are the same of Table 3. 2 

and the device placement of Figure 3. 7 is simplified to one wireless link 

only, the one corresponding to PNC – DEV1, being the UCA antenna 

pattern uniform with the look orientation in the azimuth angle.  

As is seen from Figures 3.6 no remarkable degradation appears up to the 

most directive array of 16 elements even with 5Gσ = ° . The achieved 

goodput is 31 Mbps roughly, irrespectively of M and Gσ . This result stems 

from the feature of the UCA directive pattern of providing the same gain as 

the ULA systems in the direction of the maximum gain, but, unlike ULA, 

with a boresight beamwidth still large enough also for high directive 

antenna configurations. As argued in the previous paragraph in fact, the high 

directional gain of ULA comes together with a very narrow beamwidth that 

stresses the required pointing precision and may cause goodput losses.  
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Figure 3. 11a- mean goodput M=8 
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Figure 3.11b - mean goodput, M=16 
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The characterization of the wireless channel with UCA systems is then 

exempted from the inclusion of the antenna orientation and also from the 

antenna pattern provided that the antenna controller performance is below a 

given  threshold. This threshold amounts to 5,5Gσ = °  and 6Gσ = °  for M=8 

and M=12, respectively. These values of the standard deviation ensure 

goodput losses inferior to 5% of the maximum as observed by simulation. 

Such a boundary for UCA is then less strict than for ULA. 
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Figure 3. 12b – goodput std, M=16 
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Figure 3. 12a – goodput std, M=8 
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The behaviour of the curves regarding the goodput standard deviation of 

Figures 3.12 is self-explanatory. We only notice that the amount of the 

increase of the fluctuation around the mean value, due to a high antenna 

directivity, M=16, is negligible and is less than ULA systems as can be 

observed by comparing Figure 3. 12b with Figure 3. 10c. This is an another 

proof of the stability of the  performance achievable with highly directional 

UCA systems.    
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Chapter IV. CRB for DOA Estimation of Narrow 
Band Data Signals 
 

 

 

4.1 CRB on DOA Estimation of Narrow Band Signals. 

In this section we derive the CRB of the direction of arrival estimation of 

narrow band sources propagating over an AWGN channel. The complex 

transmitted signal ( )s t  has the following expression 

 
2

( ) 2 ( ) cj f t
s k T

k

s t P c g t kT e= −∑ ππππ  (4.1) 

where sP denotes the transmit power, { }kc are the constellation points 

transmitted at the symbol rate 1/T . They are zero mean independent 

random variables with 

{ }*
0

c
k i

E i k
E c c

otherwise

=
= 


 

and ( )Tg t  is the transmit (ideal) shaping filter 

 
1 0

( )
0

T

t T
g t

elsewhere

≤ ≤
= 


 (4.2) 

The channel impulse response is 

( ; ) ( )h t t= −τ αδ ττ αδ ττ αδ ττ αδ τ  

The channel propagation delay ττττ  is considered known, i.e. perfect timing 

recovery is assumed to be carried out;   jbe=α ρα ρα ρα ρ  instead, is an unknown 

complex-valued attenuation. Thus, the reference analytic signal ( )r t  

incident on the array system assumes the form 

 

2 2

2

( ) ( )

2 ( )

c c

c

j f j f t
k T

k

j f tj
s k T

k

r t e c g t kT e

e P c g t kT e

−= − − =

       = − −

∑

∑

π τ ππ τ ππ τ ππ τ π

ππππψψψψ

α τα τα τα τ

ρ τρ τρ τρ τ
 (4.3) 

in which we have set 0 2 cb f= = −ψ ψ π τψ ψ π τψ ψ π τψ ψ π τ . The vector of the received signal 

then becomes 
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2
( ) 2 ( ) ( ) ( ) = ( ) ( ) ( )cj f tj

s k T

k

t e P c g t kT e t r t t
πψρ τ φ φ= − − +   +∑y a n a n  (4.4) 

The steering vector ( )φa  in (4.4) can be either ( )ULA φa  of (2.5) or 

( )UCA φa of (2.11). In the general approach, in (4.4) there are four unknown 

quantities in one symbol time T. They are grouped in the vector 

[ ] [ ]k kTu u≜ defined as 

 [ ] [ , , ]Tkk c=  ,u ρ ψ φρ ψ φρ ψ φρ ψ φ  (4.5) 

whereas the carrier frequency cf  is commonly considered as a known 

quantity over 0T . The assumption of knowing the carrier frequency is 

reasonable since signal reception is usually carried out by estimating the 

frequency offset first and the other quantities of (4.5)  subsequently. Thus, 

when estimating [ ]ku , the carrier frequency offset has already been 

recovered and the original uncertainty of the carrier frequency is transparent 

at the second stage of estimation. This justifies the framework developed on 

the analytic signal with the assumption of knowing the signal carrier 

frequency.  

When characterizing the parameter space two categories of parameters arise. 

In one case the parameters are random variables whose behaviour is 

governed by a probability density that represents the a priori knowledge of 

the parameters. The probability density function (pdf) is usually known. In 

the second case the parameters are unknown deterministic variables. For 

both kinds of variables there exists an ultimate inferior limit to the 

estimation accuracy of any unbiased estimator. This inferior limit is the well 

known Cramér Rao Bound (CRB). The derivation of the CRB of non 

random parameters is usually plain whilst it is more complicated when 

dealing with the pdfs of the random variables. In the presence of stochastic 

variables one can resort to the Modified CRB (MCRB) [31 – 32] to simplify 

the manipulation of the pdfs or to overcome the lack of knowledge of the 

pdfs. The MCRB is a lower bound that has been proven to be less than the 

CRB. The matter will be illustrated in the sequel with reference to the 

constellation symbols that can be known (pilot) or modulation symbols 
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(stochastic variables). In our treatment we assume PSK constellation points 

and we calculate the CRB when the symbols are pilots whereas we calculate 

the MCRB if they are data symbols. In both cases the deterministic 

unknown parameters of our interest are ρ , ψ  and φ  and the FIM [33] is 

 

J J J

J J J

J J J

 
 

=  
  
 

FIM

ρρ ρψ ρφρρ ρψ ρφρρ ρψ ρφρρ ρψ ρφ

ψρ ψψ ψφψρ ψψ ψφψρ ψψ ψφψρ ψψ ψφ

φρ φψ φφφρ φψ φφφρ φψ φφφρ φψ φφ

 (4.6) 

In estimation models where one of the quantities of (4.6) is known instead, 

the framework scales easily by removing the row and the column 

corresponding to this quantity in the FIM. 

Furthermore, we point out that all the unknown quantities are treated as 

constant quantities versus time for the overall duration of the observation 

interval 0T . As for 0T , we first focus on the situation of an observation 

interval equal to one symbol time T and consider the changes involved when 

0T extends to many symbol times afterwards. For ease of notation we omit 

the index k since its presence is clear by the context. 

We dub CRB(uv) the CR lower bound of any unbiased estimator of the 

unknown parameter uv which is the entry of position v in the vector 

[ , ]T ,ρ ψ φρ ψ φρ ψ φρ ψ φ . CRB(uv) is found as the diagonal element at the position (v,v) of 

the inverse of the Fisher Information Matrix FIM, i.e.  

 1( ) [ ]v vvCRB u FIM −=  (4.7) 

The matter then reduces to the computation of the FIM. There are two 

approaches to the derivation of the FIM. One is for direct derivation from 

the vector of continuous signals ( )ty ; the other defines a finite-dimensional 

representation of ( )ty  and works on this representation instead of ( )ty . The 

former is the optimum approach by default since it exploits all the 

information about the quantities to estimate. On the other hand, the passage 

to a finite-dimension vector z  is useful in practical estimation situations 

since it reduces the dimension of the observation space to the finite one of z. 

From the theoretical point of view, manipulating the observed space to draw 

z from ( )ty  poses the issue of  the finite-dimensional accuracy. Equivalency 
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Figure 4. 1 - signal reception at the m-th 

branch 

( )Tg t

T

−
t kT τ= +

2 cj f t
e

π−
( )my t [ ]mz k*

kc

between the two approaches occurs if z captures all the information about 

the parameters that is present originally in ( )ty . Such a of known data 

symbols, Figure 4. 1 shows how the signal ( )ty  can be received and 

manipulated at the m-th antenna system branch to obtain the sufficient 

statistic z. 

 

 

 

 

 

 

 

 

 

The samples [ ]mz k  at the output of the matched filter are 

 [ ] [ ]mjj
m mz k e e n kψρ − ⋅= +β p

 (4.8) 

The noise samples [ ]mn k  are statistically independent Gaussian random 

variables  

{ } 2
' ,[ ] [ ] [ ]m m m mE n k n k k kσ δ δ∗

′′ ′= −  

with zero mean and variance equal to 

 2 0

0

2 2

2 s s

N T

P N
σ

ξ
= =  (4.9) 

where δ  indicates the Kronecker delta and 2s SP Tξ =  is the energy per 

symbol interval of the complex signal (4.1) with the signalling pulse (4.2) 

and PSK constellation symbols. 

 

4.2 Derivation of the FIM  from the Sufficient Statistic 

Indicating with z the vector of the samples [ ]mz k  taken at the branches of 

the array system, the entry (v,w) of the FIM  can be computed as 

 
2 ln ( / )

v wu u

v w

p
J E

u u

 ∂ 
= −  

∂ ∂  
z

z u
 (4.10) 

In (4.10) ( / )p z u is the probability density function of the vector z  for a 

given u  and the stochastic expectation Ez  is actually carried out versus the 
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noise samples ( E E=z n ). In fact from (4.8) one can see that /mz u  is a 

Gaussian variable with the same second order statistic as [ ]mn k  and with 

mean value equal to mjjae eψ ⋅β p
. When 0T T= , the probability density 

function ( / )p z u is 

 

[ ]

[ ]( ) [ ]( )

1 2

2
0

2

1 1
( / ) exp

22

1 1
exp ( ) ( )

22

m

M M
jj

m

m

M
H

j j

p z k e e

k e k e

−
− ⋅

=

  
= − − =  

   

                = − − −     
  

∑ β p
z u

z a z a

ψψψψ

ψ ψψ ψψ ψψ ψ

ρρρρ
σσσσσ πσ πσ πσ π

ρ φ ρ φρ φ ρ φρ φ ρ φρ φ ρ φ
σσσσσ πσ πσ πσ π

 

 (4.11) 

and its logarithm 

[ ]( ) [ ]( )2

1
ln( ( / )) ( ) ( )

2

H
j jp C k e k e= − − −z u z a z a
ψ ψψ ψψ ψψ ψρ φ ρ φρ φ ρ φρ φ ρ φρ φ ρ φ

σσσσ
 

where C indicates a constant term versus the unknown parameters of u . 

Thus one can consider the log likelihood function ( / )∆ z u  

 ( ) ( )2

1
( / ) [ ] ( ) [ ] ( )

2

H
j jk e k e∆ = − − −z u z a z a
ψ ψψ ψψ ψψ ψρ φ ρ φρ φ ρ φρ φ ρ φρ φ ρ φ

σσσσ
 (4.12) 

By computing all the derivatives of (4.12) as indicated in (4.10) (see 

Appendix B for the mathematical details) we get the FIM. 

 

 

4.3 CRB for DOA with ULA Systems 

The FIM of ULA systems is 

2

2 2

2 2

22 2

2 2

0 0

( 1)
0 2 sin

2

( 1) ( 1)(2 1)
0 2 sin 2 sin

2 6

c

c c

M

fM M M
d

c

f fM M M M M
d d

c c

 
 
 
 

− = −
 
 
 − − − 

−     

FIM

σσσσ

ρ ρρ ρρ ρρ ρ
π φπ φπ φπ φ

σ σσ σσ σσ σ

ρ ρρ ρρ ρρ ρ
π φ π φπ φ π φπ φ π φπ φ π φ

σ σσ σσ σσ σ

 

 (4.13) 

From (4.13), it is clear the block diagonal form of the FIM, with a block 

amplitude Α that is associated to entries of u  concerning the amplitude of 
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( )ty  and a block phase Θ that is associated to the entries of u  concerning 

the phases ( ψ  and φ  ) of ( )ty  instead. Thus we write 

 
 
 
 

Α 0
FIM =

0 Θ
 (4.14) 

The wanted CRBs are computed through the inversion of (4.13)-(4.14). In 

particular, the CR lower bound for DOA estimation is 

 

( )
( ) ( ) ( ) 2 2

2

2

det 12
( )

det det det
2 sin ( 1)

ULA

c

J J
CRB

f
d M M

c

ψψ ψψφ
ρ

π φ
σ

= = =
  − 
 

A

A Θ Θ
 

The signal to noise ratio SNR of the received signal at the symbol interval 

kT is given by 

 
( )

22 2

2

0 0 0

1

2 / 2 2

s s

s

E

N N N

ρ ξρ ρ
σ ξ

= = =  (4.15) 

In (4.15) sE is the energy of the received symbol. The CRB for DOA 

estimation becomes 

 
2

2

0

24 1
( )

2 sin ( 1)
s

c

CRB
Ef

d M M
Nc

φ

π φ

=
  − 
 

 (4.16) 

In Figure 4. 2 we plotted the square root of (4.16) in degrees, with the inter 

sensor offset d equal to half a wavelength (standard ULA). The DOA φ  is 

90° and the channel attenuation is 2 1ρ = . Figures 4.3 show the CRB for 

different directions of arrivals and different values of the SNR of the 

incident signal. In fact, ULA systems exhibit a strong dependency of the 

DOA estimation performance from the direction of arrival itself. This is a 

direct consequence of the anisotropic arrangement of the array sensors. 

(4.16) shows that the function ( )ULACRB φ  has its minimum at broadside 

90φ = ° , and increases progressively with φ  that moves from broadside to 

end-fire. The end-fire positions, 0φ = °  and 180φ = ° , are DOAs for which 

the ( )ULACRB φ  is infinitely large. 
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Figure 4. 2 – CRB on DOA of standard ULA systems 
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Figure 4. 3a – CRB of a 12 sensors ULA system versus SNR and DOA 
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Figure 4.3b – CRB of a 12 sensors ULA system versus DOA and SNR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 CRB for DOA with UCA Systems 

The FIM of UCA systems is 
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The CRB on the direction of arrival is  

 
2 1

2

0 0

2
( )

2 2
cos

UCA M
s

m

CRB
ER

m
M N

φ
π π
λ

−

=

=
   
   
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∑
 (4.17)  

 

By substituting R  given in (2.10) in (4.17) the expression of the CRB 

becomes 
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12
2

0 0

1 cos
8
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∑
 (4.18) 

Unlike ULA, UCA systems show an isotropic CRB versus the DOA The 

uniform circular disposition of sensors ensures isotropic estimation 

capability. In Figure 4. 4 we plotted the square root of (4.18) with 2 1ρ = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing ULA versus UCA systems one notice that UCA systems 

have the advantage of a CRB that is not affected by the source arrival angle, 

but suffer from noise sensitivity. Even a relatively large number of sensors 

like 12 or 16, which is unrealistic in real antenna systems, would not be able 

of lowering down the performance accuracy below 1° with a SNR of 10 dB 

over an AWGN channel and no interfering sources (on a single-symbol 

observation time). In general we can state that the DOA CRB of UCA 

Figure 4. 4 – CRB on DOA of UCA systems 
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systems is higher than the one of ULA systems. By contrast, the CRB of 

ULA systems is not isotropic versus the source direction of arrival is robust 

to noise, at least in a wide region of source directions of arrivals distant 

from end fire. With narrow band sources, the only ways to boost the 

performance is in hardware/spatial domain by increasing the number of 

sensors or in time domain by extending the observation interval to more 

symbol times. How the CRB varies with the number of  array elements is 

immediately evident by looking at the CRB formulas. The dependency of 

the CRB from the observation interval 0T  is briefly treated in the next 

section. 

 

4.5 Extension of the Observation Time to more Symbol Intervals 

(4.16) gives the CRB in one symbol interval T. When the condition of quasi-

stationary channel is true, the observation interval 0T  can be extended up to 

a certain number K of symbol intervals T during which the channel does not 

vary significantly. It can be seen easely that  

0 0

1
T KT T TCRB CRB

K
= ==  

To see this, suppose to use a PSK constellation. With 0T KT=  the vector 

Kz  of the samples at the output of the array system is the collection of K 

times the vector z taken T by T  

[ ][ ], [ 1],..., [ 2], [ 1]
T

K k k k k K= + − + −z z z z z  

Because of the statistical independence of the noise samples, the probability 

density function of Kz  is 

1 2

2
0

1 1
( / ) exp [ ] ( / )

22

m

K
M M

jj K
K m

m

p z k e e p
−

⋅

=

   
 =  − − =   

    
∑ β p

z u z u
ψψψψρρρρ

σσσσσ πσ πσ πσ π

 

Thus the following identities conclude the proof 

0 0T KT T T
K

= =
=  FIM FIM    and   

0 0

1 11
T KT T TK

− −

= =
=  FIM FIM  
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4.6 Derivation of the FIM from the Continuous Time Observation Space 

The derivation of the FIM has been conducted so far through the notion of 

the sufficient statistic z that has been introduced in lieu of the infinite-

dimensional observation space represented by the vector of waveforms ( )ty . 

The approach to the CRB through direct manipulation of ( )ty  is managed 

by replacing the probability density function ( / )p z u in (4.10) with the 

likelihood function ( )L u  that is defined as in [33] 

 

{ }
0

0

2

0

2

0

1
( ) exp ( ) ( )

4

1
exp ( ) ( ) ( )

4

T

T

L t E t dt
N

t r t dt
N

 
= − −    

 
      

 
         =  − − 

 

∫

∫

u y y

y a φφφφ

 (4.19) 

from which it can be seen that the entry (v,w) of the FIM can be calculated 

as 

 [ ]
00

1
Re ( ) ( ) ( ) ( )

2v w

H

u u T
w v

J r t r t dt
N u u

 ∂ ∂
=  

∂ ∂ 
∫ a aφ φφ φφ φφ φ  (4.20) 

and also 

 
0

2

0

1
( ) ( )

2v vu u T
v

J r t dt
N u

∂
= 

∂∫ a φφφφ  (4.21) 

In appendix B, it is shown that (4.20) and (4.21) lead to the same FIM as in 

(4.13), and this justifies why the vector z that we defined in (4.8) was 

considered to be a sufficient statistic. 

 

4.7 MCRB: Estimation with Unknown Data Symbols 

We now analyse the case of a data modulated signal and derive the MCRB 

of the direction of arrival. Suppose to split the entries of u in two sub-

vectors [ ],s du u : su  gathers the stochastic variables ({ }kc here) of u whilst 

du  contains the deterministic parameters of u. We are interested in 

estimating du . The FIM is computed in a way similar to (4.10), that is 
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2 ln ( / )

,
v w

d
u u v w d
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p
J E u u

u u

 ∂ 
= −              ∈ 
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z

z u
u  (4.22) 

In (4.22), ( / )dp z u is the probability density function of the observed 

statistic z for a fixed du  and the stochastic expectation Ez  is to carry out 

versus the noise. In the presence of the other stochastic variables su , 

( / )dp z u  is found as  

 ( / ) ( / , ) ( )d d s sp p p d

∞

−∞

= ∫z u z u u u u  (4.23) 

where ( )sp u denotes the pdf of su . The conditional probability density 

function of the sufficient statistic z given [ ],s du u , ( / , )d sp z u u , is usually 

available, as for instance for Gaussian channels. Unfortunately, it can 

happen that either the integration in (4.23) or the expectation in (4.22) is 

impossible to calculate in close form. We call Modified FIM, (MFIM), the 

FIM that we use for the MCRB. Its entry is  
2 ln ( / , )

v w

M d s
u u v w d

v w

p
J E u u

u u

 ∂ 
= −              , ∈ 
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z

z u u
u  

and the expectation Ez  is to carry out versus both the noise and su . 

Similarly to (4.11), ( / , )d sp z u u  is  
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With easy manipulations it can be shown that 

 { }2

kE c= =MFIM FIM FIM  (4.24) 

where the last equality in (4.24) holds for PSK constellation symbols. (4.24) 

states that the MCRB of any non random parameter calculated with 

modulation symbols is equal to the CRB attainable with pilot symbols. Thus 

referring to the DOA as an example, one can interpret (4.24) as follows. 

When DOA estimation is performed on pilot symbols, if an efficient 

estimator exists it will achieve the CRB (4.16). When instead estimation is 

performed on modulation symbols, if an efficient estimator exists it will 
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achieve a minimum variance curve that coincides with (4.16) only if the 

approximation of the MCRB is tight. 
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Chapter V. CRB for DOA of OFDM Data Signals 
 

 

 

5.1 CRB of Parameter Estimation with Waveforms having Orthogonal 

Derivatives  

In this section we tackle the problem of estimating Nu deterministic 

parameters 0 1,..., ,..., ,...,
u

T

v w Nu u u u −
 =  u  through the observation of N u-

bearing signals { }
0,..., 1

( ; )i i N
s t

= −
u  in the presence of additive white Gaussian 

noise. The hypothesis about the N waveforms is that their derivatives versus 

the vector u are orthogonal  

 
0

* 0( ; ) ( ; )i l

T
iv w

i ls t s t
dt

A i lu u

≠∂ ∂
=  =∂ ∂ 

∫
u u

 (5.1) 

where 0T  indicates the estimation time. With N=1 we have the traditional 

estimation of a set of unknown quantities by observing one waveform 

corrupted by white Gaussian noise. With the extension to a generic number 

N of waveforms, we aim to study how the estimation of u attainable when 

the observation space includes all the set of waveforms { }
0,..., 1

( ; )i i N
s t

= −
u is 

related to the estimation of u attainable when one observes only one of the 

N functions. That is, if one characterizes the estimation of u from the 

observation of one waveform ( ; )is t u , how the estimation of u can related to 

the observation of more waveforms. The problem can be stated as follows. 

The observed signal is 

 ( ) ( ; ) ( )y t s t n t= +u  (5.2) 

where ( )n t  is AWGN with zero mean and PSD 02N  and ( ; )s t u  is  

 
1

( )

0

( ; ) ( ; )
N

i

i

s t s t
−

=

= ∑u u  (5.3) 

We call NFIM  the FIM resulting from the joint observation of all the 

waveforms { }
0,..., 1

( ; )i i N
s t

= −
u  and iFIM  the FIM associated to the function 
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( ; )is t u . We point out that in our estimation model, the vector of unknowns 

u to be estimated as well as all the waveforms { }
0,..., 1

( ; )i i N
s t

= −
u are 

deterministic quantities, and the stochastic part of the model is due to the 

presence of the white Gaussian noise. It can be shown that 

 

1
1

1

0

N

N i
i

−−
−

=

 
=   

 
∑FIM FIM  (5.4) 

To prove this we start by deriving our FIM from the time continuous 

representation of the observation space because the hypothesis (5.1) has 

been formulated in terms of continuous time waveforms. Thus we follow 

this approach and write the likelihood function ( )L u as 

{ }
0 0

2 2

2 2

1 1
( ) exp ( ) ( ) exp ( ) ( ; )

2 2T T
n n

L y t E y t dt y t s t dt
      

= − −  = − −   
      

∫ ∫u u
σ σσ σσ σσ σ

 

from which the entry (v,w) of the FIM is found to be 

 
0

*

2

1
Re ( ; ) ( ; )

v wu u T
v wn

J s t s t dt
u u

 ∂ ∂
=  

∂ ∂ 
∫ u u

σσσσ
 (5.5) 

When only one function of the set, let us say ( ; )is t u , is taken , we have  

0

*

2

1
Re ( ; ) ( ; )

v w

i
u u i iT

v wn

J s t s t dt
u u

 ∂ ∂
=  

∂ ∂ 
∫ u u

σσσσ
 

In the case of N waveforms instead, we substitute (5.3) in (5.5) to get  

 

0

0

0

*

2

1 1
*

2
0 0

1 1
*

2
0 0

1
Re ( ; ) ( ; )

1
       Re ( ; ) ( ; )

1
Re ( ; ) ( ; )

v w

N
u u

T
v wn

N N

i lT
i lv wn

N N

i l
T

i lv wn

J s t s t dt
u u

s t s t dt
u u

s t s t dt
u u

− −

= =

− −

= =

 ∂ ∂
= = 

∂ ∂ 

 ∂ ∂
= = 

∂ ∂ 

 ∂ ∂
        = = 

∂ ∂ 

∫

∑ ∑∫

∑ ∑∫

u u

u u

u u

σσσσ

σσσσ

σσσσ
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0

0

1 1
* *

2
0 0,

1 1
* *

2
0 0,

2

1
Re ( ; ) ( ; ) ( ; ) ( ; )

1
Re ( ; ) ( ; ) ( ; ) ( ; )

1
Re

N N

i i i lT
i l l iv w v wn

N N

i i i l
T
i l l iv w v wn

n

s t s t s t s t dt
u u u u

s t s t s t s t dt
u u u u

u

− −

= = ≠

− −

= = ≠

  ∂ ∂ ∂ ∂ 
=  + =  

∂ ∂ ∂ ∂    

 ∂ ∂ ∂ ∂ 
=   +  = 

∂ ∂ ∂ ∂  

∂
=

∂

∑ ∑∫

∑ ∑∫

u u u u

u u u u

σσσσ

σσσσ

σσσσ 0

0

0

1 1
* *

0 0,

1
*

2
0

1
*

0,

( ; ) ( ; ) ( ; ) ( ; )

1
Re ( ; ) ( ; )

            Re ( ; ) ( ; )

N N

i i i l
T

i l l iv w v w

N

i i
T

i v wn

N

i l
T

l l iv w

s t s t s t s t dt
u u u

s t s t dt
u u

s t u s t u dt
u u

− −

= = ≠

−

=

−

= ≠

 ∂ ∂ ∂ 
  +  = 

∂ ∂ ∂  

  ∂ ∂
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∂ ∂  

 ∂ ∂ 
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∂ ∂  
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u u u u

u u
σσσσ

0

0
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*
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0
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*
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1
Re ( ; ) ( ; )

             Re ( ; ) ( ; )
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i iT
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N

i l
T

l l iv w

s t s t dt
u u

s t s t dt
u u

−

=

−

= ≠


=



  ∂ ∂
= +  

∂ ∂  

 ∂ ∂ 
+ = 

∂ ∂  

∑ ∫

∑∫

u u
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0

1 1
*

2
0 0,

1
Re ( ; ) ( ; )

v w

N N
i
u u i l

T
i l l i v wn

J s t s t dt
u u

− −

= = ≠

  ∂ ∂ 
= +  

∂ ∂    
∑ ∑ ∫ u u

σσσσ
 (5.6) 

 

If the set of waveforms { }
0,..., 1

( ; )i i N
s t

= −
u  is such that 

 
0

1 1
*

0 0,

Re ( ; ) ( ; ) 0,        
N N

i lT
i l l i v w

s t s t dt i j
u u

− −

= = ≠

 ∂ ∂ 
= ∀ ≠ 

∂ ∂  
∑ ∑ ∫ u u  (5.7) 



 

 74 

 

the observations of u among the u-bearing waveforms are uncoupled and 

one gets 
1

0
v w v w

N
N i
u u u u

i

J J
−

=

= ∑  

Since the mathematical manipulation has been developed with generic 

unknowns vu  and wu , we can conclude that if (5.7) holds true  

 
1

0

N

N i

i

−

=

= ∑FIM FIM  (5.8) 

It easy to recognise that the hypothesis (5.1) is a sufficient condition for 

(5.7) to happen. In fact, under (5.1) the individual integral in (5.7) is zero for 

any pairs of functions (i,l), with i l≠ , the overall sum is zero for any fixed 

index i, and the theorem is proved. 

When the estimation model is scalar the FIM is a scalar quantity that 

corresponds to the inverse of the CRB. Thus with a self explanatory notation 

(5.8) becomes 

 
1

1 1

0

N

N i
i

CRB CRB
−

− −

=

= ∑  (5.9) 

The theorem that we have derived in this section is of practical interest in 

several estimation problems in wireless communications. In the next section 

we will discuss an example of application of the theorem to the DOA 

estimation of OFDM signals impinging on antenna array systems and we 

will show a counter example to the theorem to show that it is not trivial. 

We conclude this paragraph by pointing out two conditions, which are 

useful in the sequel, under which the hypothesis (5.1) holds true. They are:  

i) { }
0,..., 1

( ; )i i N
s t

= −
u is a set of orthogonal functions 

ii) the derivative of each function component is proportional to the 

function itself for all the unknowns 

 
0,..., -1( ; )

( ; )          
0,..., -1

i
i

uv

i Ns t
s t

v Nu

=∂
=

=∂

u
uγγγγ  (5.10) 

where γ is a constant quantity versus time. 
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5.2 DOA Estimation of OFDM Signals over AWGN Channel 

Estimation of the DOA of OFDM signals impinging on antenna arrays is an 

example of application of the results of the previous section. The analytic 

OFDM signal can be written as 

 
1

2 ( )
,

0

2
( ) ( )i

N
j f t kTs

k i
k i

P
s t c e p t kT

N

−
−

=

= −∑ ∑ ππππ  (5.11) 

where N is the number of FFT points, FFT GT T T= +  is the overall OFDM 

symbol length given as the sum of the effective FFT time plus the duration 

of the cyclic prefix. Indicating with 0f  the frequency of the lowest Sub 

Carrier (SC) and with 1 FFTf T∆ =  the subcarrier spacing, 0if f i f= + ∆  

represents the frequency of the i-th SC. { },ck i  are the constellation points 

{data, pilot, null} that modulate the sub-carriers. It is reasonable to suppose 

that the data streams of different sub-carriers are statistically independent 

{ }, ,
0

c
k i k l

E i l
E c c

otherwise

∗ =   
= 

     
 

Moreover, ( )p t  is an ideal signalling pulse 

1
( )

0

FFT GkT t kT T T
p t kT

otherwise

         ≤ ≤ + +
− = 

               
 

To fix the scenario we analyse the case of Gaussian channel, with direction 

of arrival φφφφ  of the OFDM source in the x-y Cartesian plane. For simplicity 

we concentrate on ULA systems. The OFDM signal is the sum of N 

narrowband PAM signals with carriers { }
0,..., 1i i N

f
= −

 that are orthogonal to 

each other. With this in mind, we try to exploit the background of the 

narrow band signals to treat the broadband signals generated through the 

OFDM technique. In particular we use the simplification (2.4), regarding the 

reception of narrowband signals with antenna arrays, to all the SCs of the 

received OFDM signal. In general, with the same formalism used for narrow 

band signals, the noiseless reference OFDM signal received at reference 

spot of the antenna system is 
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1
2 ( )

0

( ) ( ) i

N
j f t kT

i
k i

r t t kT e
−

−

=

= −∑ ∑ ππππµµµµ  

if the i-th data modulation bearing signal ( )i t kT−µµµµ  does not vary over 

{ }max mτ , the signals captured by the array sensors at the frequency if  

during the signalling interval T , are the signal ( )i t kT−µµµµ  with different 

phase rotations. In operating conditions in which this happens, the noiseless 

component of the OFDM signal received at the array element m, ( )mr t , is 

1 2 cos
2 ( )

,
0

2
( ) ( )

i

i

fN j md
j f t kTs c

m k i
k i

P
r t c e e p t kT

N

−
− −

=

= − −∑ ∑
π φπ φπ φπ φπ τπ τπ τπ τα τα τα τα τ  (5.12) 

A convenient way of writing the vector of the M OFDM signals received at 

the M elements of the array 

0 1 2 1( ) [ ( ), ( ) ,..., ( ) , ( )]TM Mt y t y t y t y t− −=y  

is on a SC basis. For this purpose, we introduce the array manifold of the 

ULA systems in the direction φ  at the frequency if  

2 cos ( 2)2 cos ( 1)2 cos

( ) 1, ,..., ,
i i i

T
f f f

j d j M d j M d
i c c c
ULA e e e

π φ π φ π φ
φ

− − 
=  

  
a  

so as the signal component of the i-th SC received at the array element m, 

that we indicate with ( )i
mr t , is 

2 cos 2 cos
2 ( )

,

2
( ) ( ) ( )

i i

i

f f
j md j md

j f t kTi is c c
m k i

k

P
r t c e p t kT e r t e

N

π φ π φπ τα τ− −= − − =∑

and the vector collecting ( )i
mr t at all sensors  

0 1 2 1( ) [ ( ), ( ),..., ( ) , ( )]i i i i i T
M Mt r t r t r t r t− −=r  

can be written as 

  
2 ( )

,

2
( ) ( ) ( ) ( ) ( )ij f t kTi i is

k i ULA ULA

k

P
t c e p t kT r t

N

π τα τ φ φ− −= − − =∑r a a  (5.13) 

The (noisy) vector ( )ty of the received OFDM signal becomes 

 
1

0

( ) ( ; ) ( )
N

i

i

t t tφ
−

=

= +∑y r n  (5.14) 

In (5.14) we have highlighted the dependency of the vectors ( )i tr  from φ  

and we have introduced the noise vector ( )tn . 
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As seen with narrowband signals, in general, there is a certain number of 

unknowns to be estimated in the received signal (5.14). The presence of 

each unknown affects the estimation accuracy of the other unknowns as it is 

possible to realise by looking at the FIM. In the following we focus on the 

estimation of the DOA φ  only. The considerations that follow may apply to 

the other parameters to estimate and however the general view of more 

unknowns is of straightforward derivation bearing in mind the study of 

impinging narrowband sources of Section 1.5. 

(5.13) shows that, consistently with the narrow band domain, the received 

vector of the SC i, ( )i tr , carries the DOA information in the antenna 

steering vector at the frequency if  of the SC itself as if the individual SC 

were transmitted separately from the other SCs. In the context of OFDM 

incident signals, the theorem of Section 5.1 permits the composition of  the 

CRB of DOA of the wideband OFDM signal through the CRBs of the DOA 

estimations performed over the narrowband SCs.  

We now explain how the estimation model of (5.14) fits the one considered 

in the theorem whose observed signal is given in (5.2). The DOA φ  is the 

deterministic parameter to estimate. It spans over the set of waveforms 

{ }
0,..., 1

( ; )i

i N
t φ

= −
r . The time continuous observation space ( )ty  in (5.14) 

actually is a vector form of (5.2). Clearly, the scalar correspondence of (5.2) 

is with each entry of the vector ( )ty . The hypothesis (5.1) has to be put in a 

vector form and concerns the derivatives of { }
0,..., 1

( ; )i

i N
t φ

= −
r versus the 

parameter to estimate. We develop the integral in (5.1) when 0T  is one 

OFDM symbol time under the hypothesis of perfect timing alignment. 

( ) ( )
                                         

( ) ( )2 2 ( )( ) 2 2*
, ,

i l i l

k i H lt t
dt

k

H ki l
j kT f f j f t j f t

c c e e e dtk i k l

k

Τ+Τ+
∂ ∂

=
∂ ∂

Τ+

Τ+Τ+ ∂ ∂+ − − = 
 ∂ ∂
  Τ+

∫

∫

r r

a a

ττττ

φ φφ φφ φφ φ
ττττ

ττττ
φ φφ φφ φφ φπ τ π ππ τ π ππ τ π ππ τ π παααα

φ φφ φφ φφ φ
ττττ

(5.15) 
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For any pairs (i,l) of distinct sub carriers the orthogonality property of the 

exponential functions { }2

0,..., 1

ij f t

i N
e

ππππ

= −
ensures the orthogonality of the 

derivatives, thus the hypothesis is met. It is easy to verify that the conditions 

i) and ii) of Section 5.1 are met in deriving (5.15) and that the same applies 

if the derivatives in (5.15) are calculated versus the other unknown 

quantities of the vector [ , , ]Ta=u ϕ φ . The result of (5.15) is that the 

estimates of the DOA are uncoupled among the SCs. Thus, they can be 

composed following a parallel combination to yield the DOA estimation of 

the broadband signal. 

A question now arises on whether the SCs are pilots or modulation SCs. For 

pilot SCs we have the CRB, for data SCs we have the MCRB. The number 

of available pilot SCs may vary significantly in real wireless 

communications systems and two situations are possible. It can be that all 

the SCs are pilots. This happens for instance during the preamble of the 

MAC frames that is composed of a few, maybe only one, known OFDM 

training patterns for the sake of signal synchronization, channel status 

estimation and antenna weights control operations [34]. Or, as for instance 

during the payload of the data frame, it can be that only a tiny subset of SCs 

are pilots. When the pilot SCs are merged in the data SCs one can wonder 

what is the estimation performance if the observation is limited to the pilot 

SCs only. So far we have focused on the analysis of the (M)CRB of the 

OFDM signal by focusing on the continuous time representation of the 

received signal ( )ty . When dealing with the analytic signal ( )ty  the 

separation of the SC would be artificial. But the problem makes sense in 

real receivers where the SCs are split after down-conversion and FFT 

demodulation so as an observation sub-space made of pilot SCs becomes 

available in the form of signal samples which are used for estimation. Thus 

one can think of shifting to the base band analysis and use the portion of 

sufficient statistic representing the pilot sub-space. Following the analysis of 

the narrow band signals, it is easy to realise that the operations of the down-
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conversion and FFT demodulation carried out in the OFDM receivers 

preserve the information that is present in ( )ty  and the vector of samples [4] 

 

 
1

,

0

[ ] ( ) [ ]
N

i
k i ULA

i

k c kα φ
−

=

= +∑z a n  (5.16) 

compose a sufficient statistic. In (5.16) [ ]kn  is a vector of M statistically 

independent random white Gaussian noise variable with zero mean and 

variance  

0 02 2

2 s FFT OFDM

N N

P T E
=  

Where OFDME  is the energy transmitted per OFDM symbol. We are 

interested into the part of the sum of (5.16) where the index i runs on the 

pilot SCs. This portion of the sufficient statistic is mapped in the group of 

pilot SCs of the analytic signal ( )ty  that we indicate with ( )p ty . We can 

now apply the theorem of Section 5.1 to ( )p ty  as if the ( )ty  were 

composed of ( )p ty  only and derive the CRB of the observation sub-space 

of the noisy pilot samples [ ]p kz . 

Indicating with pN  the number of pilot SCs and introducing the symbol p 

to indicate pilot we have that the FIM of the pilot portion of the OFDM 

signal is the sum of the FIMs of the pilot SCs 

 

1

0

p

p
i

N
p
OFDM SC

i

−

 =

= ∑FIM FIM  (5.17) 

With reference to the matrix notation presented in (4.13) and (4.14) 

( )
( )

det

p
OFDMp

OFDM p
OFDM

J
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−=
Π
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2 /
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=

= =∑ψψψψψψψψ ψψψψψψψψ
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and 
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2 sin ( 1)

2
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c c
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=

− −
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where we have highlighted the received SNR per SC 

( ) 2
2

0 0

2 /

2 2

s FFT s
SC

SC

PT N E
SNR

N N

 
= =  

 

αααα
αααα  

After some manipulations we get the final expression 

 

2
2 1 1

2 2
2

0 0

( )

2 sin
( ) ( )

p p

pp
OFDM

N N

p i i SC

i i

MN
CRB

d
N MQ M f Q M f SNR

c

− −

= =

=
     −          

∑ ∑

φφφφ
π φπ φπ φπ φ

 

 (5.18) 

In (5.18) we have used the abbreviations 

( ) ( 1) / 2Q M M M= −  

and 

2 ( ) ( 1)(2 1) / 6Q M M M M= − −  

We note that if pN N= , (5.18) gives the CRB of the DOA estimation on 

OFDM known symbols. 

We now conclude the paragraph with an example of estimation problem, 

which is close to the one analysed throughout this document, to which the 

application of the theorem is not possible since the hypothesis of the 

theorem is not met. Suppose we want to estimate the reference carrier 

frequency 0f  of the OFDM signal. We repeat the calculation as in (5.15) 

and differentiate versus 0f . 

( )
1 2

( ) ( ) 2
  2 ( )

0 0 0

FFT

l ik k M j ti H l
t t T

dt t kT e dtm
f f

mk k

−Τ+Τ+ Τ+Τ+ −
∂ ∂

∝ − − −  ∂ ∂
=Τ+ Τ+
∑∫ ∫

r r
τ ττ ττ ττ τ ππππ

π τ τπ τ τπ τ τπ τ τ

τ ττ ττ ττ τ
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We find out that the integral is not zero, and in turn, the cross sum (5.7) is 

generally not zero meaning that the observations are coupled among the SCs. 

The difference with the estimation of [ , , ]Ta=u ϕ φ  is that when 

differentiating the exponential function versus 0f  

02 22
2 2

0 0

2 ( )
i

i iFFT

ij f t j f tj t
j f t j f tTe e

e j te t e
f f

π ππ
π ππ γ

∂ ∂
= = =

∂ ∂
 

one notes that ( )tγ  comes out as a function of time instead of as a constant 

quantity versus timeγ , i.e. the condition ii) highlighted in Section 5.1 is not 

met. 

 

5.2.1 Numerical Example: IEEE802.15.3c OFDM 

As a practical example of DOA estimation of OFDM sources, we consider 

the IEEE 802.15.3c wireless standard, for which an OFDM signal 

transmission in the 60 GHz (57-66 GHz) free band with a channel 

bandwidth from 1 GHz to 5GHz is being considered. 

We first verify that the assumption (2.4) is true at the frequencies at stake. 

With an inter-sensor spacing d of half a wavelength ( 5 mmλ = ) and 10 

sensors, the linear size L of a ULA system is  

( 1)
22,5 

2 60 

M c
L mm

GHz

−
= ≃  

{ }max mτ  is experienced when the wave impinges from 0φ = °  or 180φ = °  

and corresponds to the time that the wave front takes to propagate from one 

end sensor to the other end sensor 

{ } -12( 1) 1
max 75 10  

2 60 
m

L M
s

c GHz
τ

−
= = ×≃  

The complex envelope of the OFDM signal can be considered constant 

during { }max mτ  if 

 { }maxOFDM mT τ≫  (5.19) 

With a channel bandwidth 5 B GHz=  and 256N =  SCs the OFDM symbol 

duration is 
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81
2,58 10  

2( )
OFDMT s

B N

−×≃ ≃  

and the approximation (2.4) holds true. Note that (5.19) poses an upper limit 

to the data rate of OFDM; the maximum signalling rate per single SC can be 

expressed as 

{ }max
1

( / ) 667 
20max m

B N Mbaud
τ

= ≃  

which is significantly higher than the signalling rate of  IEEE 802.15.3c 

OFDM indeed. .A similar conclusion can be drawn with UCA systems. For 

UCA systems the constraint on the signalling rate is 

{ } 12

2

2 1 2
max 27 10

1 cos
10

m

R
s

c c

λ
τ

π

−= = ×
  −     

≃  

and (5.19) is verified. 

Let us focus on ULA systems and change pN  with N  with obvious 

meaning of the implications. To simplify the expression, we note that 

0/ 0.08 1B f ≃ ≪  and make the following approximations in (5.18)  

                                   
1

0

0

N

i

i

f Nf
−

=
∑ ≃    and    

1
2 2

0

0

N

i

i

f Nf
−

=
∑ ≃  (5.20) 

from which it yields  

 802.15.3 2

20

0

1 24 1
( )

2 sin ( 1)

IEEE c
OFDM s

SC

CRB
N Ef

d M M
Nc

   −   
   

≃φφφφ

π φπ φπ φπ φ

 (5.21) 

The interpretation of (5.21) is that the (M)CRB of IEEE 802.15.3c OFDM 

sources decreases linearly with the number of SCs. To be more general, one 

can refer the DOA (M)CRB to any of the SCs of the OFDM source and for 

both UCA and ULA systems write 

 802.15.3 802.15.3

1
( ) ( )

i

IEEE c IEEE c
OFDM OFDM SC

CRB CRB
N

 
−

 ≃φ φφ φφ φφ φ  (5.22) 

In Figures 5.1 we have plotted the square root of (5.22) in the cases of ULA 

and UCA systems, respectively, by varying the number of pilot SCs Np that 
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Figure 5. 1a – CRB on DOA of OFDM signals versus Np , ULA systems with 8 sensors 
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Figure 5.1b – CRB on DOA of OFDM signals versus Np , UCA systems with 8 sensors 

are present in the OFDM signal. The decrease of the DOA (M)CRB by 

increasing the signal source bandwidth, although predictable, is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 84 

 

 

 

particularly important for UCA systems. ULA systems outperform UCA 

systems in DOA estimation but the use of more bandwidth determines 

increased values of estimation accuracy so as, unlike narrowband signals, 

the performance achieved by UCA systems for broadband applications can 

be satisfying. For instance, with a reasonable low number of pilot SCs of 8, 

the standard deviation is slightly above 1° at 10 dB of SNR with 8 sensors. 

This property together with the isotropic radiation patter make UCA 

systems worth considering for wideband applications 

 

5.2.2 Comparison between OFDM Signals and Monocarrier Signals  

In the previous sections we have approached the CRB for DOA estimation 

of wideband OFDM signal sources by means of the narrow band array 

model. The signal bandwidth is an important parameter for the application 

of such a model. The insight of adopting the narrow band array model stems 

from the structure of the OFDM signal whose wideband feature is achieved 

by maintaining a signalling interval TOFDM that is N times lower than the 

signal interval of the input data stream. Thus, the significant signal 

bandwidth for the purpose of applying the narrowband DOA estimation 

model is the subcarrier bandwidth B N  instead of the overall bandwidth B  

of the OFDM signal. In other words, the narrowband array model can be 

applied to the OFDM signal if it applicable to its narrowband subcarriers. 

The advantage of OFDM signals is the independency of the narrow band 

array model from the overall bandwidth occupied by the signal. This point 

can be understood by comparing the theory developed for the multicarrier 

OFDM signal with the analysis of a monocarrier signal having a same 

bandwidth B . The matter is explained with reference to the numerical 

example of the mm-wave communications at 60 GHz. As seen the CRB for 
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DOA estimation of OFDM signals performed on pN  pilot subcarriers out of 

N subcarriers is 

 802.15.3 2

20

1 24 1
( )

2 sin ( 1)

IEEE c
OFDM p SC

CRB
N SNRf

d M M
c

  − 
 

≃φφφφ

π φπ φπ φπ φ

 (5.23) 

where the signal to noise ratio of one subcarrier is  

( )
0

2 /s FFT
SC

PT N
SNR

N
=  

We want to compare (5.23) with the CRB attainable by observing pN  

known symbols out of N symbol intervals of a monocarrier signal source 

having the same bandwidth B of the OFDM signal. We suppose that the 

channel is quasi-stationary over N symbol times. The monocarrier signal has 

the form  

 02
( ) 2

j f tFFT
s k

k

T
s t P c p t e

N

π = − 
 

∑  (5.24) 

The CRB on one symbol time for narrow band single carrier signals is 

(4.16) that is  

2

20

0

24 1
( )

2 sin ( 1)

MC
s

CRB
Ef

d M M
Nc

φ

π φ

=
  − 
 

 

where the energy per symbol sE is 2 FFT
s

T
P

N
. If the observation time lasts 

pN  symbols times the CRB becomes  

 
2

20

0

1 24 1
( )

2 /
2 sin ( 1)

MC
s FFTp

CRB
PT NN f

d M M
Nc

φ

π φ

=
  − 
 

 (5.25) 

which is identical to (5.23). A difference between the two results however 

emerges from the analysis of the hypotheses that stay behind (5.23) and 

(5.25). We repeat here the requirement of the narrow band array model that 

is  

 { }max m Tτ ≪  (5.26) 
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where T is the symbol time interval. For standard ULA systems and OFDM 

signals (5.26) can be written as 

 
( )1

2 2
FFT

o

M N
T

f B

−
<< =  (5.27) 

which, as seen in the previous sections, is largely respected. Under (5.27) 

we have derived the general expression of the CRB (5.18) which simplifies 

in (5.23) if  

0

1
B

f
≪  

that is true also for large values of B such as 5 GHz at the reference carrier 

frequency of 60 GHz. On the other hand,  the requirement (5.26) for the 

signal (5.24) is 

 
( )1 1

2 2

FFT

o

M T

f N B

−
<< =  (5.28) 

which differs from (5.27) because the symbol time duration of the mono 

carrier signal (5.24) is 1/N-th of the OFDM symbol interval FFTT . If 0f  is 

given as a system parameter one gets the following constraint on the product 

( )1M B−  

 0 ( 1)f M B−≫  (5.29) 

which for OFDM signal is instead   

 0 ( 1)
B

f M
N

−≫  (5.30) 

(5.29) is plotted in Figure 5. 2 with a factor 10 for much greater.  

Since the maximum channel bandwidth B decreases with M that increases, 

the dependency (5.29) and (5.30) between B and M provides an upper limit 

to either of these quantities when the other is fixed. In our numerical 

example for instance, with a six sensors array, the narrow band array model 

is no longer applicable to the wideband mono carrier signals if these have a 

bandwidth larger than 1.2 GHz. This is an important drawback of the model 

given the availability of bandwidth in this portion of spectrum. When the 

signal bandwidth is such that the narrow band array model cannot be used, 

we have to resort to the more complex wideband array model in which a 
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Figure 5. 2 – B versus M for monocarrier signals 

tapped-delay line is present on each branch of the array. By contrast, the 

presence of N in (5.30) ensures that the narrow band array model can be 

applied to OFDM signals having a bandwidth B larger than 1.2 GHz that are 

the ones of interest in the 60 GHz bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 DOA Estimation of OFDM Signals over Frequency Selective Channel 

In Section  5.1 the DOA estimation problem has been studied in the case of 

Gaussian channel. In (5.12) the complex-valued channel frequency response 

of the narrow band signals  

 jbe=α ρα ρα ρα ρ  (5.31) 

has been applied unchanged to the wideband OFDM signal so that all the 

SCs undergo the same attenuation and phase shift. The DOA model 

corresponding to (5.31) is an optical one in the sense that it assumes that 

only one ray of the source reaches the receiver. The hypothesis is founded 

especially at the high frequencies of the mm-wave WPANs. Actually, this 
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model can be considered as the schematic of a more accurate description of 

the channel with LOS where the power of the received signal is spread in 

angle because of scattered (local and far) replicas, but with a dominant 

concentration around one particular direction, the one of the LOS. This 

channel is described by the cluster channel model [2] [35]. In the following 

we extend the analysis of the CRB for DOA considering this channel 

characterization as the general case. 

Under the assumption of quasi static channel during the transmission of the  

k-th OFDM signal, the received signal from the m-tue to thh antenna at the 

i-th tone of the k-th OFDM symbol time can be expressed as 

 
2 cos

,[ , ] [ , ] [ , ]
ifj md
c

m k i mz k i H k i c e n k i
π φ

= +  (5.32) 

where [ , ]H k i  denotes the channel frequency response of the sub-channel i 

during the block k. With this modelling, [ , ]H k i  is a complex unknown 

quantity 
[ , ][ , ] [ , ] j H k iH k i H k i e ∠=  

In (5.32) [ , ]mn k i  is a complex white Gaussian noise sample with zero mean 

ad variance (5.33). It comes from the white Gaussian noise sample function 

at the sensor m. 

 2 02

2
SC

s FFT

N

P T N
σ =  (5.33) 

We assume that the DOA estimation is performed through Np pilot 

subcarriers, thus, from this point onward, the index i denotes pilot sub-

carriers (the constellations symbols ,k ic are removed). The samples [ , ]mz k i  

can be grouped per SC to form Np  vectors of size Mx1 each. 

[ , ] [ , ] ( ) [ , ],          0,...,  1i

ULA pk i H k i k i i Nφ= + = −z a n  

from which we form the MNpx1 vector of all the samples [ , ]mz k i  available  
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[ ]

[ ]

,0

[ ] [ , ]

, 1

k

k k i

K N

 
 
 
 =
 
 
 − 

z

z z

z

⋮

⋮

 (5.34) 

In [ ]kz  there are 2Np+1 unknowns. The tuple of the unknowns u  is 

composed of Np amplitudes [ , ]H k i  and Np phases [ ],H k i∠  of channel 

frequency response, and the DOA φ . The derivation of the FIM can be 

calculated from (4.10)  
2 ln ( / )

v wu u

v w

p
J E

u u

 ∂ 
= −  

∂ ∂  
n

z u
 

To compute the CRB for DOA we consider the (Np+1)x(Np+1) block П of 

the FIM which is related to the unknowns regarding the phases of u to 

estimate as highlighted in (4.14). The mathematical details of the 

computation of the entries of Θ are in Appendix B.3. For the sake of 

compacting the expression of Θ we introduce the positions (5.35), (5.36) 

and (5.37). 

 

2

, 2

,
,              1,...,

p

l l p

SC

M H k N l
l N

σ

 − Θ = =  (5.35) 

 
2

1, , 1 2

,( 1)
2 sin ,       1,...,

2

p

p p

pN l

N l l N p

SC

H k N lf M M
d l N

c
π φ

σ
−

+ +

 −−  Θ = Θ = − =

(5.36) 

 

[ ] 221

1, 1 2
0

,( 1)(2 1)
2 sin

6

p

p p

N

i
N N

i SC

H k ifM M M
d

c

−

+ +
=

− −  
Θ =  

 
∑ π φπ φπ φπ φ

σσσσ
 

 (5.37) 

 

The matrix Θ is 
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0,.., 1pi N= −

 

1,1 1, 1

2,2 2, 1

1, 1 1, 1

, , 1

1,1 1,2 1, 1 1, 1, 1

0 0 0

0 0 0

0 0 0 0

0 0

0 0 0

p

p

p p p p

p p p p

p p p p p p p p

N

N

N N N N

N N N N

N N N N N N N N

+

+

− − − +

+

+ + + − + + +

Θ Θ 
 

Θ Θ 
 
 

=  Θ Θ 
 Θ Θ
 
  Θ Θ Θ Θ Θ 

Θ

⋯

⋯

⋱ ⋮

⋮ ⋮

⋯

⋯

 

 (5.38) 

 

We proceed the analysis with the simplification that 0if f≃  which has been 

introduced in (5.20) for the proposed OFDM signal format of the IEEE 

802.15.3c standard. We want to prove that the CRB for DOA of OFDM 

signals propagating through frequency selective channel and detected by a 

linear-phased array is 

 
2 1

20

00

24 1
( )

2 sin ( 1)
p

i

N

s

i SC

CRB
Ef

d M M
Nc

−

=

   −   
   

∑
≃φφφφ

π φπ φπ φπ φ

 (5.39) 

The SNR of the i-th subcarrier in (5.39) is 

 
[ ] 2

2
0

,
2

i

s

SCSC

H k iE

N

 
= 

  σσσσ
 (5.40) 

We note that (5.39) generalizes the results of Section 5.2.1 which are valid 

for signal propagation over AWGN channel. With flat channel frequency 

response in fact, the SNRs of the SCs are equal to each other because 

[ ] 2 2,H k i = ρρρρ  

and (5.39) coincides with (5.21). 

To prove (5.39) we proceed by means of the Principle of Induction. The 

idea is to demonstrate that (5.39) is valid for a general number of subcarriers.  

First we state that (5.39) holds true if 1pN = . With one subcarrier only, 

(5.39) and (4.16) coincide once recognized the correspondence  regarding 

the channel response at the frequency of interest in (5.40) and (4.15),  
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[ ] 2 2,H k i = ρρρρ  

and the correspondence regarding the signalling interval in (5.33) and (4.9) 

FFTT
T

N
=  

The first step of the Principle of Induction is proved. 

We suppose that (5.39) holds true with Np-1 subcarriers and it remains  to 

demonstrate that it holds true with Np subcarriers as well. To do this we 

denote with 
1pN −

Θ  the matrix Θ at the step Np-1 and with pNΘ the matrix Θ 

at the step Np.  From (5.38) the CRB for DOA at the step Np is 

 ( )
( )

( )
1, 1

det

p p

N p
p

N N

N

cof
CRB φ

+ +Θ
=

Θ
Θ

 (5.41) 

where ( )1, 1p pN Ncof + +Θ  indicates the cofactor of  the element 1, 1p pN N+ +Θ .  

 ( )
2

1, 1 , 2
1 1

,p p

p p

N N
p

N N l l

l l SC

M H k N l
cof

σ+ +
= =

 − Θ = Θ =∏ ∏  (5.42) 

 

For the determinant of pNΘ  we have 

 

 ( ) ( ) ( ) ( )2

1,1 1,1 1,1 1,1det 1 pp
NN

Np Npcof cof
+

+ += Θ × Θ + − Θ × ΘΘ  (5.43) 

 

The term ( )1,1cof Θ  in (5.43) is tied to the determinant of 
1pN −

Θ  as 

 

 ( ) ( ) ( )( )
2

2

1 0
1,1 ,2

2

, 11 2 1
det 2 sin

6

p

p

N
pN

l l

lSC

H k NM M Mf
cof d

c
π φ

σ
−

=

 −− −   Θ = + Θ 
 

∏Θ  

 (5.44) 

 

while the term ( )1,1Npcof +Θ , as is possible to see by inspection, is  

 ( ) ( ) 1

1,1 1,1 ,

2

1
p

p

N
N

Np Np l l

l

cof
+

+ +
=

Θ = − Θ Θ∏  (5.45) 

 

By substituting (5.44) and (5.45) in (5.43) one gets 
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− Θ Θ
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Θ Θ

 

 

that can be further simplified with the use of 
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2 2
22
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, 1
det det

, 1 ,1
                   2 sin
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σ σ

−

=
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   − −−     +  
 

∏

Θ Θ

(5.46) 

In (5.46) the ( )det pNΘ  has been expressed through the ( )1
det pN −

Θ .  

By writing (5.41) and (5.42) in the case Np-1 subcarriers we find the 

following expression of the ( )1
det pN −

Θ   

 ( ) ( ) 1

2

2
1 2

,

det

p

p

N p

N
p

N l SC

M H k N l

CRB

σ
φ −

− =

 − 

=
∏

Θ

Θ  (5.47) 

where ( ) 1NpCRB φ −
Θ

 indicates the CRB for DOA at the step Np-1. By 

deriving ( ) 1NpCRB φ −
Θ

 from (5.39), the determinant of 
1pN −

Θ  becomes 

 

( )
2

2 22
1 0

2
0 0 2

,( 1)
det 2 sin  

24

pp
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NN
pN s

i l SCSC

M H k N lf EM M
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  
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∑ ∏Θ ≃ π φπ φπ φπ φ

σσσσ

 (5.48) 
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Moreover by using (5.40) and rearranging the index of the summation in 

(5.48) we obtain  

 ( )
2 2

2 2
1 0

2 2
2 2

, ,( 1)
det 2 sin

12

pp

p

NN
p pN

l lSC SC

H k N l M H k N lf M M
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−

= =
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      
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∑ ∏Θ ≃ π φπ φπ φπ φ
σ σσ σσ σσ σ

 (5.49) 

We can now substitute the ( )1
det pN −

Θ  given (5.49) in (5.46) and get 
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2 2

2 2
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2 2
1 1

, ,( 1)
det 2 sin

12
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∑ ∏Θ ≃ π φπ φπ φπ φ
σ σσ σσ σσ σ

 (5.50) 

 

From (5.50) and (5.42) the CRB for DOA at the step Np is ( ) NpCRB φ
Θ

of 

(5.41) becomes  

( )
2

2 2

0

2
1

1

,( 1)
2 sin

12

Np

pN
p

l SC

CRB

H k N lf M M
d

c

φ

π φ
σ=

  −−    
      

 
∑

Θ
≃  

that becomes identical to (5.39) by using (5.40) and re-indexing the 

summation from l=1,..,Np to i=0,…,Np-1. This concludes the proof.  

 

5.4 Comparison of the CRB for DOA with the Simulation Analysis Results 

With the simulation analysis of the IEEE 802.15.3c MAC phased-array 

controller throughput of Section 3, we have gained insight into the impact of 

the array controller performance onto the network throughput performance. 

The quantity that we have chosen to represent the array controller 

performance is the standard deviation of the simulated Gaussian DOA 

estimator used by the array system to perform beamforming. We have then 

investigated how the throughput of the wireless links of WPNAs adopting 

IEEE 802.15.3c MAC is affected by the this second order statistics if ULA 

or UCA systems are employed for narrow beam communication. In 
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particular, we have pinpointed the turning values of  the standard deviation 

at which the drop of the throughput due to misponting is less than 5% of the 

error free channel capacity.  

We are now able to relate the information about the standard deviation of 

the simulated DOA estimator with the theoretical information represented 

by the CRB for DOA in order to understand whether the design of the IEEE 

802.15.3 c MAC phased array controller throughput based on DOA 

estimation is feasible or not. For this purpose, let us consider Figure 5. 1a 

and Figure 5. 1b that plot the CRB (sqrt(CRB) in degrees) on DOA for a 8-

element ULA and a 8-element UCA, respectively. For ULA systems we can 

see that already 2 pilot symbols are enough to meet the requirement of 

2.8Gσ = ° .We remind however that Figure 5. 1a refers to a broadside 

standard ULA while the CRB degrades close to end-fire. For instance, from 

Figure 4. 3 one sees that with 12 sensors in the array the number of pilots 

needed to achieve a CRB less than 3° when the DOA to estimate is 5°, is at 

least 10 at 0 dB and 3 at 10dB. For UCA systems the CRB is isotropic with 

the DOA. As is seen, 4 pilots ensure a CRB below 5.5° at 0 dB SNR. At 10 

dB the goal is achieved with 2 pilots. 

The analysis can be repeated in the case of more directive arrays. As seen, 

the requirements on Gσ  become stricter when increasing the array size. At 

the same time however, the performance achievable by the DOA estimators 

is expected to improve as the CRB decreases when increasing the number of 

elements in the array. In general, we can state that 12-16 pilot SCs ensure 

negligible throughput losses due to mispointnig, It is a reasonable number 

for the OFDM format of the 60 GHz  WPANs. 

 Table 5. 1 reports some details of one IEEE 802.15.3c OFDM proposal. 

 

• 256 point FFT 

• 216 Data carriers, 16 pilot carriers, 24 NULL 

• Channel Bandwidth = 750MHz 

• Symbol Time  = 384ns 

• Guard Interval  = 1/8 Symbol Time= 48ns 
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Table 5. 2- OFDM system parameters of 802.11a 

Data Rate 
(Mbit/s) 

Modulation Coding Rate 

Coded bits per 
subcarrier 
(Nbpsc) 

Coded bits 
per OFDM 
symbol 
(Ncbps) 

Data bits 
per OFDM 
symbol 
(Ndbps) 

6 BPSK 1/2 1 48 24 

9 BPSK 3/4 1 48 36 

12 QPSK 1/2 2 96 48 

18 QPSK 3/4 2 96 72 

24 16-QAM 1/2 4 192 96 

36 16-QAM 3/4 4 192 144 

48 64-QAM 2/3 6 288 192 

54 64-QAM 3/4 6 288 216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For comparison sake,  we have reported in Table 5. 2 the parallel details of 

the 802.11a PHY  

 

• 52 point FFT 

• 48 Data carriers, 4 pilot carriers 

• Channel Bandwidth = 20 MHz 

• Symbol Time (BPSK) = 4 µs 

• Guard Interval   = 0.8 µs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Rate 
(Mbit/s) 

Modulation Coding Rate 
Coded bits per 

subcarrier 
(Nbpsc) 

Coded bits 
per OFDM 
symbol 
(Ncbps) 

Data bits 
per OFDM 
symbol 
(Ndbps) 

281 BPSK 1/2 1 216 108 

421 BPSK 3/4 1 216 162 

562 QPSK 1/2 2 432 216 

843 QPSK 3/4 2 432 324 

1,125 16-QAM 1/2 4 864 432 

1.687 16-QAM 3/4 4 864 648 

2,250 64-QAM 2/3 6 1296 864 

2.531 64-QAM 5/6 6 1296 972 

 

Table 5. 1- OFDM system parameters of 802.15.3c proposal 
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Conclusions and Developments  
 

 

 

In this work we have studied the use of adaptive array systems in 60 GHz 

UWB-OFDM Personal Area Network Transceivers. The study has been 

conducted by simulations and theoretical analysis. Two sensor arrangements 

have been considered, ULA and UCA.   

We have designed and implemented into the network simulators ns-2 a 

IEEE 802.15.3c MAC array-phased controller throughput that makes use of 

a DOA estimator. Simulations have been run to assess the impact of the 

array controller performance onto the achievable throughput of the wireless 

link. Requirements about the standard deviation of the DOA estimator have 

been drawn. 

On the other hand, we have found the CRB for DOA estimation of  

impinging 60 GHz OFDM sources in the simple case of the LOS scenario.  

By comparing the DOA estimation requirements obtained by simulation 

against the CRB on DOA we can state that the use of adaptive antennas is 

possible. The requirements can be fulfilled with 12-16 pilot subcarriers 

starting from a SNR of 0 dB. This is true for the most common 

configurations of the antenna directivity for both ULA and UCA. 

Another indication of our study is that UCA systems may gain new 

consideration in wideband applications. ULA systems have the two 

drawbacks,  the end-fire and the DOA-dependent estimation performance. 

By contrast UCA systems exhibit the favourable feature of isotropic DOA 

estimation. Their CRB on DOA is generally worse than ULA. For single 

carrier applications their performance may be not enough.  

For wideband applications instead, at the cost of a signal overhead of the 

same order of the ones typically already in use for estimating other 

quantities of the received signal, their DOA estimation performance grows 

and becomes sufficient.   
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The developments of our analysis may go in many directions. Some could 

be the study of the behaviour of directional transceivers in no-LOS and 

obstructed-LOS scenarios, the system analysis with the inclusion of  

interference as this could be present and captured by either the main lobe or 

the sidelobes of the array pattern, and the design of Spatial Division  

Multiple Access (SDMA) techniques to increase the system capacity.   
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Figure a. 1 PSD of ( )Rn t  

Appendix A: Analytic White Gaussian Noise 
 

In this appendix we characterize the analytic white Gaussian noise. It is a 

complex white noise process  

( ) ( ) ( )R In t n t jn t= +  

whose imaginary component ( )In t  can be thought as obtained by filtering 

the real noise process ( )Rn t  through a Hilbert filter  

 ( ) ( ) ( )I R Hn t n t h t= ⊗  (6.1) 

where ( )Hh t denotes the Hilbert impulse response 

1
( )Hh t

tπ
=  

The frequency response of the Hilbert filter is   

( ) sgn( )HH f j f= −  

where sgn( )x is the well known sign function. The PSD of ( )
Rn

S f of ( )Rn t  

is flat and equal to 0 2N  over the bandwidth of the modulated signal with a 

carrier frequency 0f  as shown in Figure a. 1. 

 

 

 

 

 

 

 

 

 

The PSD of ( )In t is 

 ( ) ( ) ( ) ( )2

I R Rn n H nS f S f H f S f= =  (6.2) 

The PSD of the analytic process ( )n t  is made up of ( )
Rn

S f  and ( )
In

S f  

and of the cross PSDs between ( )Rn t  and ( )In t  that we have indicated with 

( )
R In nS f  and ( )

I Rn nS f . The autocorrelation function of ( )n t  is 

{ }*( ) ( ) ( )R E n t n tτ τ= +  
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With the use of (6.1), it can be decomposed into the autocorrelation 

functions involving ( )Rn t  and ( )In t as follows 

 ( ) ( ) ( ) [ ( ) ( )]
R I I R R In n n n n nR R R j R Rτ τ τ τ τ= + + −  (6.3) 

The autocorrelation functions introduced in (6.3) are defined as 

 { }*( ) ( ) ( )
Rn R RR E n t n tτ τ= +  (6.4) 

 

{ }*( ) ( ) ( )
In I IR E n t n tτ τ= +  

 

{ }*( ) ( ) ( )
I Rn n I RR E n t n tτ τ= +  

 

{ }*( ) ( ) ( )
R In n R IR E n t n tτ τ= +  

We now show how ( )
In

R τ , ( )
I Rn nR τ  and ( )

R In nR τ  can be expressed in terms 

of the autocorrelation function of ( )Rn t  (6.4). From (6.2) we have 

( ){ } ( ){ }1 1( ) ( )
I I R Rn n n nR S f S f Rτ τ− −= = =F F  

where the notation { }1− iF  represents the inverse Fourier transform. 

Moreover, as for the cross autocorrelation functions we have  

{ }

( ) ( ) ( ) ( )

            ( ) ( ) ( )

             ( ) ( ) ( ) ( )

I R

R R

n n R H R

R R H

n H n H

R E n t h d n t

E n t n t h d

R h d R h

τ τ α α α

τ α α α

τ α α α τ τ

∞

−∞

∞

−∞

∞

−∞

   
= + −  

    

= + − =

= − = ⊗

∫

∫

∫

 

and 

( ) ( ) ( ) ( )
R In n R R HR E n t n t h dτ τ α α α

∞

−∞

  
= + − = 

  
∫  
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f
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Figure a. 2 - PSD of the analytic white Gaussian noise process ( )n t  

{ }( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

R

R R I R

R R H n H

n H n H n n

E n t n t h d R h d

R h R h R

τ α α α τ α α α

τ τ τ τ τ

∞ ∞

−∞ −∞

= + − = +

= − ⊗ − = − ⊗ = −

∫ ∫
 

 

where we have used the properties that ( )
Rn

R τ  is an even function whereas 

( )Hh τ is an odd function. Thus, ( )R τ  becomes   

( ) 2 ( ) ( ) ( )
R Rn n HR R jR hτ τ τ τ = + ⊗   

from which we get the PSD of ( )n t  that is depicted in Figure a. 2.  

( ) ( ) ( )2 1 sgn
Rn nS f f S f = +   

 

 

 

 

 

 

 

 

 

 

 

Appendix B: FIM Computation 
 

B.1 Derivation of the FIM from the sufficient statistic z  of narrow band 

signals  

In the following we show the mathematical derivation of the FIM (4.13) 

from the sufficient statistic (4.8). We used the log likelihood function (4.12)  

( ) ( )2

1
( / ) [ ] ( ) [ ] ( )

2

H
j jk e k eψ ψρ φ ρ φ

σ
∆ = − − −z u z a z a  

and derive any entries of the FIM (4.6) through the definition of entry 

(4.10). It is useful to recall a few identities that are recurrent in the 

computation: 
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 ( ) ( )H Mφ φ =a a  (7.1) 

 

 { }[ ] ( ) 0jE k e ψρ φ− =n z a  (7.2) 

Moreover, indicating with ( )φaɺ  the derivative vector of ( )φa  versus the 

DOA φ  

( )
( )

φ
φ

φ
∂
∂
a

aɺ ≜  

for ULA systems we have: 
1

0

( 1)
( ) ( ) 2 sin 2 sin

2

M
H c c

ULA ULA
m

f f M M
j md j d

c c
φ φ π φ π φ

−

=

−
= − = −∑a aɺ  

 (7.3) 

 

 

21

0

2

( ) ( ) 2 sin

( 1)(2 1)
            2 sin

6

M
H c

ULA ULA
m

c

f
md

c

f M M M
d

c

φ φ π φ

π φ

−

=

 
= = 

 

− − 
=  

 

∑a aɺ ɺ

 (7.4) 

 

whereas for UCA systems we have: 

1 1

0 0

2
( ) ( ) sin cos cos sin 0

M M
H

UCA UCA m m
m m

Rπ
φ φ φ φ θ φ

λ

− −

= =

 
= − + = 

  
∑ ∑a aɺ  (7.5) 

 

( )
2 1

2

0

2 21 1
2 2

0 0

2
( ) ( ) sin cos cos sin

2 2
                               cos sin

M
H

UCA UCA m m
m

M M

m m
m m

R

R

π
φ φ φ φ φ φ

λ

π π
φ φ

λ λ

−

=

− −

= =

 = − + = 
 

   = =   
   

∑

∑ ∑

a aɺ ɺ

 (7.6) 

 

In (7.6) we have used the simplifications ( 2M > ): 
1 1

2 2

0 0

cos sin
M M

m m
m m

φ φ
− −

= =

=∑ ∑  
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and 
1

0

cos sin 0
M

m m

m

φ φ
−

=

=∑  

 

• Jρρ : 

( ) ( )

( ) ( )

( ) ( )

2

2

( / ) 1
( ) [ ] ( )

2

                         [ ] ( ) ( )

1
               Re ( ) [ ] ( )

H
j j

H
j j

H
j j

e k e

z k e a e a

e a z k e a

ψ ψ

ψ ψ

ψ ψ

φ ρ φ
ρ σ

ρ φ φ

φ ρ φ
σ

∂∆
= − +

∂ 


+ − =



 
= − 

 

z u
a z a

 

 

( ) ( )
2

2 2 2

( / ) 1
Re ( ) ( )

H
j j M
e eψ ψφ φ

ρ σ σ

 ∂ ∆
= − = − 

∂  

z u
a a  

Thus, 

ULA and UCA: 
2

2 2

( / ) M
J Eρρ ρ σ

 ∂ ∆ 
= − = 

∂  
n

z u
 

 

 

• J Jρψ ψρ= : 

( ) ( )

( ) ( )

2

( / ) 1
Re ( ) [ ] ( )

                                    ( ) ( )

H
j j

H
j j

je k e

e j e

ψ ψ

ψ ψ

φ ρ φ
ψ ρ σ

φ ρ φ

∂ ∂∆
= − +

∂ ∂ 


+ − 



z u
a z a

a a

 

From (7.1) and (7.2) one gets 

ULA and UCA:  
( / )

0J Eρψ ψ ρ
 ∂ ∂∆

= − = 
∂ ∂ 

n

z u
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• J Jρφ φρ= : 

( ) ( )

( ) ( )

2

( / ) 1
Re ( ) [ ] ( )

                                    ( ) ( )

H
j j

H
j j

e k e

e e

ψ ψ

ψ ψ

φ ρ φ
φ ρ σ

φ ρ φ

∂ ∂∆
= − +

∂ ∂ 


+ 



z u
a z a

a a

ɺ

ɺ

 

From (7.2) and (7.3) for ULA systems and from (7.2) and (7.5) one gets 

ULA and UCA : 
( / )

0J Eρφ φ ρ
 ∂ ∂∆

= − = 
∂ ∂ 

n

z u
 

 

 

• J Jψφ φψ= : 

( ) ( )

( ) ( )

2

( / ) 1
Re ( ) [ ] ( )

                                     ( ) ( )

H
j j

H
j j

j e k e

j e e

ψ ψ

ψ ψ

ρ φ ρ φ
φ ψ σ

ρ φ ρ φ

∂ ∂∆
= − +

∂ ∂ 


+ − 



z u
a z a

a a

ɺ

ɺ

 

from (7.2) and (7.3) one gets 

ULA: 
2

2

( / ) ( 1)
2 sin

2

cf M M
J E d

c
ψφ

ρ
π φ

φ ψ σ
 ∂ ∂∆ −

= − = − 
∂ ∂ 

n

z u
 

and from (7.2) and (7.5) it yields 

UCA:   
( / )

0J Eψφ φ ψ
 ∂ ∂∆

= − = 
∂ ∂ 

n

z u
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• Jψψ : 

( ) ( )

( ) ( )

( ) ( )

2

2

( / ) 1
( ) [ ] ( )

2

                          [ ] ( ) ( )

1
               Re ( ) [ ] ( )

H
j j

H
j j

H
j j

j e k e

k e j e

j e k e

ψ ψ

ψ ψ

ψ ψ

ρ φ ρ φ
ψ σ

ρ φ ρ φ

ρ φ ρ φ
σ

∂∆
= − +

∂ 


+ − =



 
= − 

 

z u
a z a

z a a

a z a

 

 

( ) ( )

( ) ( )

2

2 2

( / ) 1
Re ( ) [ ] ( )

                                  ( ) ( )

H
j j

H
j j

e k e

j e j e

ψ ψ

ψ ψ

ρ φ ρ φ
ψ σ

ρ φ ρ φ

∂ ∆
= − − +

∂ 


+ − 



z u
a z a

a a

 

From (7.1) and (7.2) one gets 

ULA and UCA: 
2 2

2 2

( / )
J E Mψψ

ρ
ψ σ

 ∂ ∆ 
= − = 

∂  
n

z u
 

 

 

• Jφφ : 

( ) ( )

( ) ( )

( ) ( )

2

2

( / ) 1
( ) [ ] ( )

2

                           [ ] ( ) ( )

1
               Re ( ) [ ] ( )

H
j j

H
j j

H
j j

e k e

k e e

e k e

ψ ψ

ψ ψ

ψ ψ

ρ φ ρ φ
φ σ

ρ φ ρ φ

ρ φ ρ φ
σ

∂∆
= − +

∂ 


+ − =



 
= − 

 

z u
a z a

z a a

a z a

ɺ

ɺ

ɺ

 



 

 106 

 

( ) ( )

( ) ( )

2

2 2

( / ) 1
Re ( ) [ ] ( )

                                 ( ) ( )

H
j j

H
j j

e k e

e e

ψ ψ

ψ ψ

ρ φ ρ φ
φ σ

ρ φ ρ φ

∂ ∆
= − +

∂ 


+ − 



z u
a z a

a a

ɺɺ

ɺ ɺ

 

where ( )φaɺɺ  is defined as 

( )
( )

φ
φ

φ
∂
∂
a

aɺɺ ≜  

Form (7.2) and (7.4) one gets 

ULA: 
22 2

2 2

( / ) ( 1)(2 1)
2 sin

6

cf M M M
J E d

c
φφ

ρ
π φ

φ σ

 ∂ ∆ − −   
= − =   ∂    

n

z u
 

and from (7.2) and (7.6) for UCA Systems it yields 

UCA: 
2 22 2 21 1

2 2

2 2 2
0 0

( / ) 2 2
cos sin

M M

m m

m m

R R
J Eφφ

π ρ π ρ
φ φ

λ λφ σ σ

− −

= =

 ∂ ∆     = − = =     ∂      
∑ ∑n

z u
 

 

 

B.2 Derivation of the FIM from the analytic signal y(t ) of narrow band 

signals 

The likelihood function to consider when the analysis is conducted with the 

analytic signal ( )ty  is 

{ }
0

0

2

2

2

0

1
( ) exp ( ) ( )

2

1
exp ( ) ( ) ( )

4

T

T

L t E t dt

t r t dt
N

 
= − −  = 

 

 
         =  − − 

 

∫

∫

u y y

y a

σσσσ

φφφφ

 

and the entry of the FIM is  

0

2 2
2

0

ln ( ) 1
( ) ( ) ( )

4v wu u T
v w v w

L
J E E t r t

u u N u u
φ

   ∂ ∂   
= − = −   

∂ ∂ ∂ ∂      
∫y y

u
y a  

thus 
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[ ]

[ ]

2
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
                                ( ) ( ) ( )

H

v v

H

v

t r t r t
t r t

u u

r t
t r t

u

φ φ
φ

φ
φ

∂ −  ∂
= − − + ∂ ∂ 

 ∂
+ − − ∂ 

y a a
y a

a
y a

 

and 

[ ]

[ ]

22 2

2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
        

( ) ( )
        ( ) ( ) ( )

H

w v w v

H H

v w w v

H

v w

t r t r t
t r t

u u u u

r t r t r t r t

u u u u

r t
t r t

u u

φ φ
φ

φ φ φ φ

φ
φ

 ∂ − ∂
= − − + 

∂ ∂ ∂ ∂ 

       ∂ ∂ ∂ ∂
+ − − + − − +       ∂ ∂ ∂ ∂       

 ∂
+ − − 

∂ ∂ 

y a a
y a

a a a a

a
y a

 

When computing the stochastic expectation, we note that  

{ }( ) ( ) ( ) 0E t r t φ− =y y a  

and obtain 

0
0

1 ( ) ( ) ( ) ( )
Re

2v w

H

u u T
w v

r t r t
J dt

N u u

φ φ  ∂ ∂ 
=   ∂ ∂   

∫
a a

 

which for diagonal elements gives 

0

2

0

1 ( ) ( )

2v vu u T
v

r t
J dt

N u

φ∂
=

∂∫
a

 

We proceed with ULA systems and omit the development of the framework 

for UCA systems. 

 

 

• Jρρ : 

 

2( ) ( )
2 ( ) ( )cj f tj

s k T

k

r t
e P c g t kT e

πψφ
τ φ

ρ
∂

= − −
∂ ∑
a

a  
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2

*

2 2

( ) ( )
2 ( ) ( ) ( ) ( )

                   2 ( )

H
s k T h T

k h

s k T

k

r t
P c g t kT c g t hT

PM c g t kT

φ
τ τ φ φ

ρ

τ

∂
= − − − − =

∂

= − −

∑ ∑

∑

a
a a

 

 

2 2

2
0 0

21
2 ( )

2 2

kT T

s
s k T

kkT

PT M
J PM c g t kT dt M

N N

τ

ρρ
τ

τ
σ

+ +

+

= − − = =∑∫  

 

 

• J Jρψ ψρ= : 

 

*

2 2

( ) ( ) ( ) ( )

                     2 ( ) ( ) ( ) ( )

                     2 ( )

H

H
s k T h T

k h

s k T

k

r t r t

j P c g t kT c g t hT

j P M c g t kT

φ φ
ρ ψ

ρ τ τ φ φ

ρ τ

 ∂ ∂
= ∂ ∂ 

= − − − − =

= − −

∑ ∑

∑

a a

a a  

 

2 2

0

1
Re 2 ( ) 0

2

kT T

s k T

kkT

J j P M c g t kT dt
N

τ

ρψ
τ

ρ τ
+ +

+

 
= − − = 

 
∑∫  

 

• J Jρφ φρ= : 

*

( ) ( ) ( ) ( )

                      2 ( ) ( ) ( ) ( )

H

H
s k T h T

k h

r t r t

P c g t kT c g t hT

φ φ
ρ φ

ρ τ τ φ φ

 ∂ ∂
= ∂ ∂ 

= − − − − =∑ ∑

a a

a aɺ
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2 2 ( 1)
                         2 ( ) 2 sin

2

c
s k T

k

f M M
P c g t kT j d

c
ρ τ π φ

− = − − −  
∑  

 

2 2Re 2 ( )

( 1)
             2 sin 0

2

kT T

s k T

kkT

c

J P c g t kT

f M M
j d dt

c

τ

ρφ
τ

ρ τ

π φ

+ +

+


= − −



− − =  

∑∫
 

 

 

• Jψψ : 

2( ) ( )
2 ( ) ( )cj f tj

s k T

k

r t
j e P c g t kT e

πψφ
ρ τ φ

ψ
∂

= − −
∂ ∑
a
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2

2 *

22 2
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k
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∂
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∑

a
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2

22 2 2
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s
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kkT

PT M
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τ

ψψ
τ

ρ
ρ τ ρ

σ

+ +

+

 
= − − = = 

 
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• J Jψφ φψ= : 

2 *

( ) ( ) ( ) ( )

                      2 ( ) ( ) ( ) ( )

H

H
s k T h T

k h

r t r t

j P c g t kT c g t kT

φ φ
ψ φ

ρ τ τ φ φ

 ∂ ∂
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                      2 ( ) 2 sin
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c
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k
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B.3 Derivation of the FIM for OFDM Signals in the case of Frequency 

Selective Channels 

The log likelihood function ( / )∆ z u  for single carrier signals (4.12) can be 

written as follows 

{ }( ) { }( )
2

1
( / ) [ ] [ ] [ ] [ ]

2

H

SC

k E k k E k
σ

∆ = − − −z u z z z z  

where [ ]kz  is the 1xNpM vector given in (5.34), 2
SCσ  is the thermal noise 

variance given in (5.33) and { }[ ]E kz  is the statistical mean value of [ ]kz . 

The statistical expectation is calculated versus the thermal noise and gives 

the following 1xNpM vector 

{ }

0

1

[ ,0] ( )

[ ] [ , ] ( )

[ , ] ( )p

ULA

i

ULA

N

ULA

H k

E k H k i

H k i

φ

φ

φ−

 
 
 
 

=  
 
 
 
 

a

z a

a

⋮

⋮

 

 

The tuple 1x(2Np+1) u of unknown parameters in [ ]kz  is  

[ ,0]

[ , 1]

[ ,0]

[ , 1]

p

p

H k

H k N

H k

H k N

φ

 
 
 
 − 
 = ∠
 
 
 ∠ − 
  

u

⋮

⋮

 

 

The elements of the FIM are calculated through 

 
2 ln ( / )

v wu u

v w

J E
u u

 ∂ ∆ 
= −  

∂ ∂  
n

z u
 (7.7) 

The application of (7.7) is easy by noting that differentiating [ ]kz  and 

{ }[ ]E kz  versus the unknown parameters specific of the sub-carrier i, i.e. 
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[ , ]H k i  and [ , ]H k i∠ , are zero in those positions related to the specific 

unknowns, [ , ]H k j  and [ , ]H k j∠ , of any other sub-carrier j, with j i≠ . 

For instance [ , ]vu H k i=  yields  

( ) ( ) ( ) ( )[ ] [ , ]
0 0 0 0 0 0 0 0

[ , ] [ , ]

T
Tk k i

H k i H k i

 ∂ ∂
=  

∂ ∂ 

z z
⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

and  

{ } ( ) ( )
{ }

( ) ( )
[ , ][ ]

0 0 0 0 0 0 0 0
[ , ] [ , ]

T
TE k iE k

H k i H k i

 ∂∂
 =

∂ ∂  

zz
⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 

Bearing this in mind, the computation of (7.7) simplifies by observing that 

O1) The cross derivatives versus the amplitudes and phases of the channel 

frequency responses of distinct sub-carriers, i.e. i-th sub-carrier and j-

th subcarrier, with i j≠ , are null.  

O2) The derivatives versus the unknowns of a same sub-carrier, develop in 

the same way as the corresponding derivatives of  narrow band signals 

of Appendix B.1. Hence, we can reuse the results of Appendix B.1. 

The expressions of entries of the FIM are listed next. 

 

• [ , ]vu H k i=  and [ , ]wu H k i=  

[ , ] , [ , ] 2H k i H k i

SC

M
J =

σσσσ
 

which corresponds to Jρρ  of Appendix B.1. 

 

• [ , ]vu H k i=  and [ , ]wu H k j=  with j i≠ , 

[ , ] , [ , ]
0

H k i H k j
J =  

   because of the observation O1. 

 

• [ , ]vu H k i=  and  [ , ]wu H k i= ∠  

[ , ] , [ , ]
0

H k i H k i
J ∠ =  

  which corresponds to Jρψ of Appendix B.1. 

• [ , ]vu H k i=  and  [ , ]wu H k j= ∠  with j i≠ , 
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[ , ] , [ , ]
0

H k i H k j
J ∠ =  

because of the observation O1. 

• [ , ]vu H k i=  and wu φ=  

[ , ] ,
0

H k i
J =φφφφ  

because of the observation O1 when j i≠  and by using the results 

about Jρφ of Appendix B.1 when j i= . 

In the following we have listed the results related to the block Θ  of the 

FIM which is of interest for the computation of the CRB for DOA. 

 

• [ , ]vu H k i= ∠  and [ , ]wu H k i= ∠  

2

[ , ], [ , ] 2

[ , ]
H k i H k i

SC

M H k i
J∠ ∠ =

σσσσ
 

 which corresponds to Jψψ  of Appendix B.1. 

 

• [ , ]vu H k i= ∠  and [ , ]wu H k j= ∠  with j i≠ , 

[ , ], [ , ] 0H k i H k jJ∠ ∠ =  

 because of the observation O1. 

 

• [ , ]vu H k i= ∠  and wu φ=  

2

[ , ], 2

[ , ]( 1)
2 sin

2

i
H k i

SC

H k if M M
J d

c
∠

−
= −φφφφ π φπ φπ φπ φ

σσσσ
 

which corresponds to  Jψφ  of Appendix B.1. 

 

• vu φ=  and wu φ=  

[ ] 221

, 2
0

,( 1)(2 1)
2 sin

6

pN

i

i SC

H k ifM M M
J d

c

−

=

− −  
=  

 
∑φ φφ φφ φφ φ π φπ φπ φπ φ

σσσσ
 

where each element of the summation corresponds to the 

corresponding entry ,Jφ φφ φφ φφ φ  of  Appendix B.1. 
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