999,349 research outputs found
Reconfiguring smart structures using approximate heteroclinic connections
A new method is investigated to reconfigure smart structures using the technique of polynomial series to approximate a true heteroclinic connection between unstable equilibria in a smart structure model. We explore the use of polynomials of varying order to first approximate the heteroclinic connection between two equal-energy, unstable equilibrium points, and then develop an inverse method to control the dynamics of the system to track the reference polynomial trajectory. It is found that high-order polynomials can provide a good approximation to heteroclinic connections and provide an efficient means of generating such trajectories. The method is used first in a simple smart structure model to illustrate the method and is then extended to a more complex model where the numerical generation of true heteroclinic connections is difficult. It is envisaged that being computationally efficient, the method could form the basis for real-time reconfiguration of smart structures using heteroclinic connections between equal-energy, unstable configurations
Probabilistic structural analysis of adaptive/smart/intelligent space structures
A three-bay, space, cantilever truss is probabilistically evaluated for adaptive/smart/intelligent behavior. For each behavior, the scatter (ranges) in buckling loads, vibration frequencies, and member axial forces are probabilistically determined. Sensitivities associated with uncertainties in the structure, material and load variables that describe the truss are determined for different probabilities. The relative magnitude for these sensitivities are used to identify significant truss variables that control/classify its behavior to respond as an adaptive/smart/intelligent structure. Results show that the probabilistic buckling loads and vibration frequencies increase for each truss classification, with a substantial increase for intelligent trusses. Similarly, the probabilistic member axial forces reduce for adaptive and intelligent trusses and increase for smart trusses
Situation determination with distributed context histories
Determining the situation within an environment is a key goal of smart environment research. A significant challenge in situation determination is reasoning about openended groups of people and devices that a smart environment may contain. Contemporary solutions are often tailored to the specific environment. In this position paper, we present a novel general situation determination framework, that by viewing people and tools as playing roles in a situation, can easily adapt recognition to incorporate the dynamic structure of a situation over time
Distributed machining control and monitoring using smart sensors/actuators
The study of smart sensors and actuators led, during the past few years, to the development of facilities which improve traditional sensors and actuators in a necessary way to automate production systems. In an other context, many studies are carried out aiming at defining a decisional structure for production activity control and the increasing need of reactivity leads to the autonomization of decisional levels close to the operational system. We suggest in this paper to study the natural convergence between these two approaches and we propose an integration architecture dealing with machine tool and machining control that enables the exploitation of distributed smart sensors and actuators in the decisional system
Reversible Self-Actuated Thermo-Responsive Pore Membrane.
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control
- …
