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Abstract. A new method is investigated to reconfigure smart structures by the technique 

of polynomial series, used to approximate a true heteroclinic connection between 

unstable equilibria in a smart structure model. We explore the use of polynomials of 

varying order to firstly approximate the heteroclinic connection between two equal-

energy unstable equilibrium points, and then develop an inverse method to control the 

dynamics of the system to track the reference polynomial trajectory.  It is found that high 

order polynomials can provide a good approximation to heteroclinic connections and 

provide an efficient means of generating such trajectories. The method is used firstly in 

a simple smart structure model to illustrate the method and is then extended to a more 

complex model where the numerical generation of true heteroclinic connections is 

difficult. It is envisaged that being computationally efficient, the method could form the 

basis for real-time reconfiguration of smart structures using heteroclinic connections 

between equal-energy, unstable configurations.  
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1. Introduction 

Significant research work currently focuses on new materials which have properties that can be changed 

in a controlled fashion by external stimuli, such as stress, temperature, electric or magnetic fields, for 

example shape memory materials (SMM) [1]. Materials can therefore be designed and manufactured 

with desirable mechanical properties which can then be used to develop smart structures [2]. 

Applications include vibration control and active shape control of flexible structures such as plates and 

trusses [3], with significant experimental results demonstrating that flexible structural vibrations can be 

effectively reduced [4,5]. Other applications involve the use of smart materials in unstable systems to 

actively monitor and suppress instability in a controlled manner [6]. Smart structures can also be used 

for the detection of cracks and corrosion monitoring [7], while embedded sensors and actuators can be 

used to actively control bucking in a loaded beam [8]. Smart materials are also used in micromechanics 

for energy harvesting, which converts energy in one form to another, such as from mechanical 

movement into electric energy[9].  

The active control of unstable smart structures has been investigated by Hogg and Huberman [10] using 

an agent-based approach to suppress instability. They considered how to improve control of a given 

shape in a smart structure and investigated the possibility of dynamically transitioning between two 

configurations of the structure, one of which is stable and the other unstable. An elastic continuous 

beam model with simply supported boundary conditions was also investigated by Camescasse, 

Fernandes and Pouget [11,12] who used nonlinear theory to investigate the transition between two 

stable positions of a buckled beam and snap-through phenomenon. Yoon and Washington have shown 

that deformable structures can be reconfigured through an optimal method of shape control, and a 

mechanically deformable reflector antenna structure was simulated as an application [13,14]. Some 

applications of reconfiguring smart structures are also emerging to improve the aerodynamic and 

aeroelastic performance of aircraft[15]. Recently a new smart structure concept for self-folding origami 

has been presented, which can fold itself through embedded electronics into a desired shape [16]. A 

crawling robot that can fold itself was developed to demonstrate the application of this technique to the 

fabrication of reconfigurable machines [17].  

In this paper, previous work by McInnes and Waters [18] is firstly summarised. We use dynamical 

system theory to investigate the characteristics of their double mass-spring problem as a simple model 

of a smart structure. We then identify a set of both stable and unstable equilibrium configurations in the 

model and consider reconfiguration of the smart structure between the equal-energy unstable states. It 

is assumed that active control can maintain the structure in an unstable state [19]. A reconfigurable 

smart structure is defined here as a mechanical system which has the ability to change its kinematic 

configuration between a finite set of stable or unstable equilibria. To achieve such a reconfiguration 

here we attempt to connect the unstable equilibria through heteroclinic connections in the phase space 

of the problem. Because unstable equilibria can be found which lie on the same energy surface in the 
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phase space, if a heteroclinic connection between unstable, equal energy equilibria can be defined, 

trajectories exist between these configurations which in principle do not require the addition of or 

dissipation of energy. Previous work [18] illustrated that the use of such heteroclinic connections 

between unstable equilibria can in principle be energetically efficient compared to reconfiguring a 

structure between stable configurations, which requires the addition of and then dissipation of energy.  

However, it can be difficult to obtain such heteroclinic connections numerically in complex dynamical 

systems, such as those with strong nonlinearity. Therefore, in this paper, a reconfiguration method 

which is based on a reference trajectory and an inverse control method which is applied to the simple 

double mass-spring model of the smart structure. The principal advantage of the inverse method for this 

problem is the flexibility for path shaping. For example, a sufficiently smooth set of functions can be 

used to generate a path to approximate the heteroclinic connection and satisfy a number of boundary 

conditions for the problem. Again, it is envisaged that being computationally efficient, the method can 

form the basis for real-time reconfiguration of smart structures using heteroclinic connections between 

equal-energy, unstable configurations. 

The fundamental theory of inverse control is then discussed and applied to the reconfiguration of the 

simple model of a smart structure. It is demonstrated that families of 4th order polynomials can provide 

suitable reference functions to generate a phase space trajectory which approximates the real 

heteroclinic connection while satisfying the boundary conditions of the problem.  

An evaluation criteria is then defined by again using a simple spring model, which under quasi-static 

conditions provides a relationship between the control action and the spring deformation required for 

control, thus developing a measure of the energy required for control. This evaluation criteria is then 

applied to the smart structure reconfiguration problem in order to assess the relative energy cost of 

different reconfiguration methods. We then consider a higher order polynomial whose additional free 

parameters allow an optimisation algorithm to be used to minimise the control effort required for 

reconfiguration. Some numerical results are then presented to elaborate on the feasibility of this 

reconfiguration manoeuvre. Finally, we extend the method from the double spring-mass model to a 3 

mass problem which provides a significant step change in complexity, both in terms of the number of 

equilibrium states and in the difficulty of finding a true heteroclinic connection. However, it is 

demonstrated that the polynomial method and inverse control can provide effective reconfiguration of 

the structure between equal-energy unstable equilibria. 

 

2. Smart structure model 

In order to investigate how to use a polynomial as an approximation of a heteroclinic connection to 

reconfigure a smart structure, a simple representative model of a structure is defined [20]. We firstly 

assume a beam modelled as a single lumped mass and two linear springs to simulate the structure’s 
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stiffness, with both ends clamped, as shown in Fig. 1. The parameters of the model are the mass m of 

the single lumped mass and the spring stiffness and natural length k and l, respectively. The distance 

between the two clamped ends is 2d and the displacement of the mass in the vertical direction is defined 

by x. From Fig. 1 it can be seen that the dynamics of the model can therefore be described by  

 𝑥̇ = 𝑣 (1) 

 𝑚𝑣̇ = −2𝑘𝑥 (1 −
𝑙

√𝑥2 + 𝑑2
) (2) 

Equation (2) can be expanded by assuming that 𝑥/𝑑 ≪ 1 to obtain  

 𝑚𝑣̇ = −2𝑘 (
𝑙

𝑑
− 1)𝑥 −

𝑘𝑙

𝑑3 𝑥3 + ⋯  (3) 

which can be written as 

 𝑞̇ = 𝑝 (4) 

 𝑝̇ = 𝜇𝑞 − 𝑞3 (5) 

where the non-dimensional position variable 𝑞 = √𝑙/𝑑3𝑥 and non-dimensional time 𝜏 = 𝑡 √𝑚 𝑘⁄⁄  are 

defined. The free parameter 𝜇 = 2(𝑙 𝑑⁄ − 1) is used as a measure of the compressive load acting on the 

model. Later, we will assume that the natural length of the spring can be manipulated through the use 

of an appropriate material, thus allowing active control of the structure.  A relationship can be therefore 

be found between variations of ∆𝜇and variations of the real spring length ∆𝑙, where 𝛿 can be defined 

as the ratio of total deformation to the initial length of the spring such that

 𝛿 =
∆𝑙

𝑙
=

∆𝜇

𝜇 + 2
 (6) 

Then, consider that the system is conservative so the problem also can be understood such that 

𝑝̇ = −𝜕𝑉(𝑞, 𝜇) 𝜕𝑞⁄  through the use of an effective potential 𝑉(𝑞, 𝜇), defined as  

 𝑉(𝑞, 𝜇) = −
1

2
𝜇𝑞2 +

1

4
𝑞4 (7) 
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Figure 1. 1degree-of-freedom bucking beam model. 

so that we can extend the 1 degree-of-freedom problem to a chain of N masses. Considering that the 

system is still conservative we use the same functional form of nonlinearity as Eq. (7) above. The 

potential can then be generalised to arbitrary pairs of neighbouring masses i-1 and i as 

 𝑉(𝑞𝑖−1, 𝑞𝑖, 𝜇𝑖) = −
1

2
𝜇𝑖(𝑞𝑖−1 − 𝑞𝑖)

2 +
1

4
(𝑞𝑖−1 − 𝑞𝑖)

4  (8) 

In order to control the dynamics of the problem it will again be assumed that we can manipulate the 

coupling parameters𝜇ito achieve active control of the structure. Since there is a linear relationship 

between𝜇i and the natural length of the spring, we again assume that we can manipulate𝜇ithrough 

changes to the natural length of the spring in the model. Now the behaviour of a chain of masses can be 

described by a Hamiltonian 𝐻(𝒒, 𝒑, 𝝁) = 𝑇(𝒑) + 𝑉(𝒒, 𝝁) with the set 𝒒 = {𝑞𝑖}(𝑖 = 1 − N) and the 

corresponding set of momenta 𝒑 = {𝑝𝑖}(𝑖 = 1 − N) such that (𝒑, 𝒒) ∈  𝐑2𝑁 , where 𝑇(𝒑) represents 

kinetic energy and 𝑉(𝒒, 𝝁) represent potential energy where 

 𝑇(𝒑) =
1

2
||𝒑𝟐||    (9) 

 𝑉(𝒒, 𝝁) = ∑ −
1

2
𝜇𝑖(𝑞𝑖−1 − 𝑞𝑖)

2 +
1

4
(𝑞𝑖−1 − 𝑞𝑖)

4

𝑁+1

𝑖=1

 (10) 

with boundary conditions 𝑞0 = 0 and 𝑞𝑁 = 0, so that the chain is pinned at both ends. 

In order to explore the possibility of reconfiguring a smart structure using the approximate polynomial 

method, a simple two masses chain with three linear springs will firstly be considered with the springs 

clamped at both ends, as shown in Fig. 2. The model assumes that the masses are constrained to move 

only in the vertical direction.  
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Figure 2. 2 degree-of-freedom bucking beam model. 

The Hamiltonian for this two masses model can then be defined from the kinetic energy and potential 

energy through the Eqs. (9) and (10) as 

 𝑇(𝒑) =
1

2
|𝒑𝟏

𝟐| + |𝒑𝟐
𝟐|       (11) 

 𝑉(𝒒, 𝝁) = −
1

2
𝜇1𝑞1

2 −
1

2
𝜇2(𝑞1 − 𝑞2)

2 −
1

2
𝜇3𝑞2

2 +
1

4
𝑞1

4 +
1

4
(𝑞1 − 𝑞2)

4 +
1

4
𝑞2

4       (12) 

Now we can fully define the problem by a dynamical system of the form  

 𝑞̇1 = 𝑝1 (13) 

 𝑝̇1 = 𝜇1𝑞1 − 𝑞1
3 + 𝜇2(𝑞1 − 𝑞2) − (𝑞1 − 𝑞2)

3 (14) 

 𝑞̇2 = 𝑝2 (15) 

 𝑝̇2 = 𝜇3𝑞2 − 𝑞2
3 − 𝜇2(𝑞1 − 𝑞2) + (𝑞1 − 𝑞2)

3 (16) 

where full details of the development of the simple smart structure model are provided by McInnes and 

Waters [18]. 

 

3. Approximate heteroclinic connection and control 

We note that the system has been simplified by assuming 𝑥/𝑑 ≪ 1. This approximation is sufficient to 

provide the required qualitative behaviour of the system through the Eq. (3), which is a simple cubic 

nonlinearity, while avoiding undue algebraic complexity.  It will be shown that the system defined by 

Eqs. (13-16) has a number of equilibria which are both stable and unstable and may be connected 

through paths in the phase space of the problem. One type of path is the heteroclinic connection which 

requires the stable and unstable manifolds of two unstable equilibria to be connected. Solving Eqs. (14) 

and (16) for equilibrium conditions yields five equilibria for the parameter set, 𝜇1=1, 𝜇2=1.5 and 𝜇3=1. 

The location of the equilibria are listed in Table 1. The linear stability of these equilibria can be 

determined through linearisation of Hamilton’s equations in the neighbourhood of each equilibrium 

point to determine the eigenvalues of the equilibria 𝜆𝑗(j = 1 − 4). A set of stable equilibria are expected 
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with conjugate imaginary eigenvalues and a set of unstable equilibria are expected with real eigenvalues 

of opposite sign [21]. It can then be determined that the 2 degree-of-freedom system possesses 3 

unstable equilibria E0, E1, E2 and 2 stable equilibria E3 and E4 shown in Fig. 3 with contours of potential 

V. 

 

Table 1. Stability properties of the 5 equilibria of 2 degree-of-freedom bucking beam model[10]. 

Point 𝑞̃1 𝑞̃2 1,2  3,4 V Type 

E0 0 0 ±1 ±2 0 Saddle × Saddle 

E1 1 1 ±√2i ± 1 -0.5 Saddle × Centre 

E2 -1 -1 ±√2i ± 1 -0.5 Saddle × Centre 

E3 -2/3 2/3 ±1 √3⁄ i ±2√2i -8/9 Saddle × Saddle 

E4 2/3 -2/3 ±1 √3⁄ i ±2√2i -8/9 Saddle × Saddle 

 

 

Figure 3. Potential V (q,) and equilibria (3 unstable equilibria E0, E1 and E2, and 2 stable 

equilibria E3 and E4). 

Since the E1 and E2 lie on the same energy surface, there may be a heteroclinic connection connecting 

these equilibria, as shown in Fig. 4a, so that the structure can be reconfigured between these two 

equilibria without work being done. Similarly, if the structure is at the stable equilibria E3, it needs to 

cross the potential barrier at E1 to transition to the other stable equilibrium E4, as shown in Fig. 4b, 

however energy must be added to the system to reach the top of the barrier and then dissipated to reach 

the final equilibrium state. 
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Figure 4. Transitions between different equilibria. (a) Ideal heteroclinic connection through E3 or 

E4 between E1 and E2, (b) Crossing the potential barrier E1 between E3 and E4. 

3.1. Constructing the reference polynomial 

Although heteroclinic connections are essential characteristic of non-linear dynamical systems, it can 

be difficult to find exact heteroclinic connections numerically in complex nonlinear dynamical systems. 

Therefore, a method has been investigated to approximate heteroclinic connections which we envisage 

can form the basis for real-time reconfiguration of smart structures. The heteroclinic connection will be 

defined as a 4th order polynomial, viz 

 𝒒∗(𝑡) = 𝒂𝟎 + 𝒂𝟏𝑡 + 𝒂𝟐𝑡
2 + 𝒂𝟑𝑡

3 + 𝒂𝟒𝑡
4 (17) 

The unknown vector of constants 𝒂i (i=1-4) in the reference polynomial can then be related to the 

boundary conditions of the system. 

The ideal heteroclinic connection in Fig. 4 departs from equilibrium E1, goes through the global 

minimum at equilibrium E4 and ends in equilibrium E2. We can therefore define conditions on the 

polynomials which approximate the heteroclinic connection, viz 

 [𝒒∗(0) 𝒒∗(𝑇 2⁄ ) 𝒒∗(T) 𝒒̇∗(0) 𝒒̇∗(T)] =

[
 
 
 
 

1
2/3

1
−2/3

−1 −1
0
0

0
0 ]

 
 
 
 
T

 (18) 

Then, the only remaining free parameter to define the reference polynomial is the total reconfiguration 

duration T. Therefore, we can obtain an approximate heteroclinic connection defined using Eqs. (18) 

where the constant vectors of Eqs. (17) are found to be  

 [𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒] =

[
 
 
 
 

1
0

1
0

14 3𝑇2⁄ −50 3𝑇2⁄

−52 3𝑇3⁄

32 3𝑇4⁄

76 3𝑇3⁄

−32 3𝑇4⁄ ]
 
 
 
 
T

 (19) 
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This function provides a smooth reference trajectory while ensuring that the required boundary 

conditions are satisfied. After repeated differentiation these polynomials provide the corresponding 

velocities and accelerations to be tracked to follow the reference trajectory.  

Similarly, the transition from E3 to E4 can also be defined. We consider that this path should cross the 

potential barrier E1, so the boundary conditions are defined as  

 [𝒒∗(0) 𝒒∗(𝑇 2⁄ ) 𝒒∗(T) 𝒒̇∗(0) 𝒒̇∗(T)] =

[
 
 
 
 
−2/3

1
2/3
1

2/3 −2/3
0
0

0
0 ]

 
 
 
 
T

 (20) 

The constants of Eqs. (17) are therefore defined as:  

 [𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒] =

[
 
 
 
 

−2 3⁄
0

2 3⁄
0

20 𝑇2⁄ 12 𝑇2⁄

−104 3𝑇3⁄

16 𝑇4⁄

−88 3𝑇3⁄

16 𝑇4⁄ ]
 
 
 
 
T

 (21) 

Now that the reference polynomials have been defined, an inverse method will be developed in order 

to track them, allowing an approximate heteroclinic connection to be followed. 

3.2. Inverse methods 

Inverse control allows tracking of time dependent constrains and is an effective method to control non-

linear systems, used extensively in a diverse range of nonlinear control problems [22]. A nonlinear 

system is assumed to have a generic form of 

 𝒙̇(𝑡) = 𝑓{𝒙(𝑡), 𝒖(𝑡); 𝑡} ,  𝒙 ∈ 𝑅𝑚,  𝒖 ∈ 𝑅𝑛,  𝑡 ∈ [0, 𝑇]         (22) 

where 𝒙(𝑡) is the system state, 𝒖(𝑡) is a vector of inputs and f is a smooth function describing the 

dynamics of the process. The generic boundary conditions and constrains are defined as 

 𝒙(0) = 𝒙𝟎,  𝒙(𝑇) = 𝒙𝒇.   (23) 

The inverse method represents the control problem of how to find a control vector 𝒖(𝑡) which can track 

desired outputs of the system while meeting the requirements of the boundary conditions so that 

 𝒆{𝒙(𝑡),  𝒙∗(𝑡); 𝑡} = {𝒙(𝑡) − 𝒙∗(𝑡)} = 0    (24) 

where e is a continuous constraint function and 𝒙∗(𝑡) represents the desired output. This relationship 

should be differentiated repeatedly until the control vector appears explicitly.  

For our dynamical system we need to extend this method to provide nonlinear control to track the 

reference trajectory in the presence of uncertainties. We may differentiate the constraint vector e until 
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the control appears explicitly, then we may add feedback terms instead of defining the constraint vector 

to be null so that 

 𝒆̈{𝒙(𝑡),  𝒙∗(𝑡); 𝑡} = −𝒈1𝒆̇ − 𝒈2𝒆       (25) 

where 𝒈1 and 𝒈2 are constant gain matrices given by 

𝒈1 = 𝐷𝑖𝑎𝑔{𝑔11, 𝑔12} 

𝒈2 = 𝐷𝑖𝑎𝑔{𝑔21, 𝑔22} 

The 4th order polynomial can then be used as a reference trajectory with the inverse control method to 

provide an example of a controlled heteroclinic connection through E3 between E1 and E2, with 𝜇1=1, 

𝜇2=1.5 and 𝜇3=1 as parameters, and the reconfiguration duration later set as T=20. 

Recall Eq. (12), (13), (14) and (15), which can be expressed in matrix form as 

 [

𝑞̇1

𝑝̇1

𝑞̇2

𝑝̇2

] = [

𝑝1

−𝑞1
3 − (𝑞1 − 𝑞2)

3

𝑝2

−𝑞2
3 + (𝑞1 − 𝑞2)

3

] + [

0
𝑞1

0
0

0
(𝑞1 − 𝑞2)

0
−(𝑞1 − 𝑞2)

0
0
0
𝑞2

] [

𝜇1

𝜇2

𝜇3

] (26) 

This is now in the form of  𝒙̇ = 𝑓(𝒙) + ℎ(𝒙)𝒖, which is an affine system with drift terms, where 𝒙̇ is a 

vector of state variables and 𝒖 is a vector of control variables. Feedback linearisation can then be used 

to transform the original system model into an equivalent linear model, by algebraically transforming 

the nonlinear system into linear dynamics, so that linear control methods can be applied. Feedback 

linearisation therefor uses exact feedback, while conventional (Jacobian) linearisation which is a linear 

approximation of the actual non-linear dynamics [23]. 

We can rewrite Eq. (26) in a simpler form: 

 

[𝒒̈] = [
−𝑞1

3 − (𝑞1 − 𝑞2)
3

−𝑞2
3 + (𝑞1 − 𝑞2)

3] + 𝐽(𝑥)𝝁

= [
−𝑞1

3 − (𝑞1 − 𝑞2)
3

−𝑞2
3 + (𝑞1 − 𝑞2)

3] + [
𝑞1

0
(𝑞1 − 𝑞2)

−(𝑞1 − 𝑞2)
0
𝑞2

] [

𝜇1

𝜇2

𝜇3

] 

(27) 

The invertibility matrix: 𝐽(𝑥) has rank 2 when there are two values not equal to zero among the three 

variables q1, q2 and q1-q2. From Section 3.1, the control system will then have four null points, when 

q1-q2=0 and q1=0 and q2=0. Therefore, the three control parameters can be chosen to avoid singularities, 

for example when q1 vanishes, the corresponding value of 𝜇1 will be unbound, so we can then select 𝜇2 

and 𝜇3 as the control parameters with a constant value of 𝜇1. The system is therefore controllable with 

two state variables and two control variables. In this way, the natural length of the spring can be used 

as the control (assumed through an appropriate smart material) and so the control parameters which can 

be used to track the reference trajectory are given by   
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 𝝁 = 𝐽−1(𝑥)(𝒒̈ − [
−𝑞1

3 − (𝑞1 − 𝑞2)
3

−𝑞2
3 + (𝑞1 − 𝑞2)

3]) (28) 

In this paper we formulate a boundary value for the critical region of possible control. A simple 

algorithm is used to determine the singular states and then provide a new set of control variables. Here, 𝛿, 

which is defined in Section 2, is used as an evaluation index to achieve control. Although 𝝁is the 

nominal control vector, the real situation should be considered: the spring is elastic but within limits. 

Therefore the real deformation 𝛿 is defined to be no more than 25% to approximate a realistic system. 

Therefore, when 𝛿2is more than 𝛿̅, where 𝛿̅ corresponds to a deformation of 25%, as defined through 

Eq. (6), 𝜇1 and 𝜇3 are chosen as the control variables with fixed 𝜇2; when 𝛿1is more than 𝛿̅, 𝜇2 and 𝜇3 

are choose as the control variables with fixed 𝜇1; when 𝛿3is more than 𝛿̅, 𝜇1 and 𝜇2 are chosen as the 

control variables with fixed 𝜇3, with Eq. (28) providing the control variables 𝜇1, 𝜇2 and 𝜇3, where 𝛿1 

𝛿2 and 𝛿3represent the deformation ratio of real springs corresponding to 𝜇1, 𝜇2 and 𝜇3, respectively. 

Using Eqs. (24) and (25), the constraint can then be modified as  

 𝒆 = 𝒒 − 𝒒∗       (29) 

 𝒆̇ = 𝒒̇ − 𝒒̇∗       (30) 

 𝒆̈ = 𝒒̈ − 𝒒̈∗ = −𝒈𝟏𝒆̇ − 𝒈𝟐𝒆 (31) 

In order to ensure convergence to the desired output 𝒒∗ a Lyapunov function will be defined as 

 𝜙(𝒒, 𝒒̇) =
1

2
(𝒒 − 𝒒∗)𝑇𝒈𝟐(𝒒 − 𝒒∗) +

1

2
(𝒒̇ − 𝒒̇∗)𝑇(𝒒̇ − 𝒒̇∗) (32) 

where 𝜙(𝒒, 𝒒̇) > 0 and 𝜙(𝒒∗, 𝒒̇∗) = 0 for 𝒈𝟐 > 𝟎. The time derivative of the Lyapunov function is 

clearly  

 𝜙̇(𝒒, 𝒒̇) = (𝒒̇ − 𝒒̇∗)𝑇𝒈𝟐(𝒒 − 𝒒∗) + (𝒒̇ − 𝒒̇∗)𝑇(𝒒̈ − 𝒒̈∗) = 𝒆̇𝑻𝒈𝟐𝒆 + 𝒆̇𝑻𝒆̈ (33) 

Substituting Eq (31) into Eq (33) we obtain the expression of the time derivative of the Lyapunov 

function. It can be seen that 𝜙 is monotonically decreasing corresponding to 𝒈𝟏 > 0 and 𝒈𝟐 > 0 such 

that 

 𝜙̇(𝒒, 𝒒̇) = 𝒆̇𝑻𝒈𝟐𝒆 + 𝒆̇𝑻(−𝒈𝟏𝒆̇ − 𝒈𝟐𝒆) = −𝒆̇𝑻𝒈𝟏𝒆̇ ≤ 0 (34) 

where again 𝒈𝟏 and 𝒈𝟐 are the gain matrix. It is then clear that the required acceleration is given by   

 𝑞̈1 = 𝑞1̈
∗ − 𝑔11(𝑞1̇ − 𝑞1̇

∗) − 𝑔12(𝑞1 − 𝑞1
∗)       (35) 
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 𝑞̈2 = 𝑞2̈
∗ − 𝑔21(𝑞2̇ − 𝑞2̇

∗) − 𝑔22(𝑞2 − 𝑞2
∗)       (36) 

Through intermediate variables 𝑞̈1 and  𝑞̈2, the inverse control method can be connected to the system 

dynamics. That is, Eqs. (35) and (36) are used as feedback to control the dynamics of the system defined 

by Eqs. (13)-(16). The system dynamics are therefore artificially linearised about the nominal reference 

trajectory so that the control variables can then be determined from Eq. (28) as 

 
𝝁 = 𝐽−1(𝑥)(

−𝜆11𝑞1̇

−𝜆21𝑞2̇
+ [

𝑞1̈
∗ + 𝑔11𝑞1̇

∗ − 𝑔12(𝑞1 − 𝑞1
∗) + 𝑞1

3 + (𝑞1 − 𝑞2)
3

𝑞2̈
∗ + 𝑔21𝑞2̇

∗ − 𝑔22(𝑞2 − 𝑞2
∗) + 𝑞2

3 − (𝑞1 − 𝑞2)
3])          

   

(37) 

This provides a composite control which ensures convergence to the desired reference trajectory while 

avoiding control singularities, as shown in Fig. 5. Equation (37) provides a distinct relationship between 

the control variables 𝝁 and the state variables 𝒒, so the state variables 𝒒 form the control variables 𝝁 

along with the reference trajectory 𝒒∗. For a practical implementation the actuator band width and 

measurement noise needed to be considered, however, this ideal smart structure model just focus on the 

mathematical theory and control manoeuvre, therefore, for future application, more details about the 

actuator and sensor need elaborate consideration.    

Trajectory
Generator

Controller
Control

Selection

Structure

Reference Trajectory
q*(t)

e States 

q(t)

Feedback 

stabilisation
Boundary

Conditions
Manoeuvre

Duration

 μ

 

Figure 5. Composite feedback linerisation control scheme. 

3.3. Energy evaluation criteria 

In order to control the reconfiguration of the model smart structure we have implicitly assumed that the 

natural length of the springs can be modulated through the parameter set 𝜇1, 𝜇2 and 𝜇3 (again, assuming 

use of an appropriate smart material, such as shape-memory alloys which can be deformed when heated). 

In order to estimate the energy requirements for such modulation we provide a simplified description 

of the spring actuator [24], as presented in Fig. 6. Two performance parameters should be considered 

in the model, one is the basic property of the smart material, the induced-strain effect, denoted by 𝑑𝑠 in 

Fig. 6; the other is the internal stiffness, 𝑘𝑠, again shown in Fig.6. Due to spring compressibility, an 

elastic displacement 𝐹 𝑘𝑠⁄  can be produced by the load F. The spring can actuate the induced-strain 
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displacement, ds, to increase or decrease the output displacement 𝑑𝑒, as shown in Fig.6a, where 𝑑𝑒 is 

given as 

 𝑑𝑒 = 𝑑𝑠 −
𝐹

𝑘𝑠
        (38) 

F

ks
ks

ds de deds

ba
 

Figure 6. Control effort evaluation criteria using a simple spring model. Shaded block represents smart 

material element with internal stiffness. (a) Element under external load F. (b) Element attached to 

external spring (adapted from [23]). 

Now the external load, F, is considered as a product of an external spring with same stiffness 𝑘𝑠, as 

shown in Fig.6b, thus 

 𝐹 = 𝑘𝑠𝑑𝑒       (39) 

Combing Eq. (38) and Eq.(39), the relationship between 𝑑𝑒 and 𝑑𝑠 can be found as 

 𝑑𝑠 = 2𝑑𝑒       (40) 

Under quasi-static conditions, the output energy is then half the product between the force and the 

output displacement, i.e. 

 𝐸 =
1

2
𝑘𝑠𝑑𝑒

2       (41) 

Substituting Eq. (40) into Eq. (41) we obtain the expression for input energy in terms of induced-strain, 

as 

 𝐸 =
1

2
𝑘𝑠 (

1

4
𝑑𝑠

2)       (42) 

Now we consider the relationship between the energy input and control action more specifically. 

Through the above analysis, and from Section 2, we can use the control variable 𝜇 = 2(𝑙 𝑑⁄ − 1) to 

obtain 

 ∆𝑙 = (𝑑 2⁄ )∆𝜇        (43) 

Consider that ∆𝑙 and 𝑑𝑠 have the same significance in the spring model so that Eq. (41) may be written 

as 
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 𝐸 =
1

2
𝑘𝑠 (

1

4
𝑑𝑠

2) =
1

2
𝑘𝑠 (

1

4
(
𝑑

2
)
2
∆𝜇2) =

1

32
𝑘𝑠𝑑

2∆𝜇2 ∝ ∆𝜇2     (44) 

where 𝑘𝑠, d are constants. Using Eq. (44) we now have a simple means of comparting the energy 

requirements to track the reference polynomial trajectory between equilibrium states of the smart 

structure model. 

3.4. Numerical solutions 

The method defined in Section 3.2 will now be applied to illustrate two reconfiguration manoeuvres 

and the use of the inverse method to achieve effective control. The inverse method will be used to 

reconfigure the 2 degree-of-freedom beam model with a 4th order polynomial to approximate the ideal 

heteroclinic connection through E3 between E1 and E2 .The approximate heteroclinic connection can be 

seen in Fig. 7a, where the controller tracks the approximate trajectory defined by the 4th order 

polynomial, with the constant gains defined as 𝑔11 = 𝑔21 = 0.25  and 𝑔12 = 𝑔22 = 0.75 and the 

reconfiguration duration T=20. The corresponding shape of the structure during the transition from E1 

to E2 is shown in Fig. 7b. The labels in Fig. 7b illustrate the transition process corresponding to the 

positions marked in Fig. 7a.  The corresponding controls 𝜇1, 𝜇2 and 𝜇3 are shown in Fig. 7c, where it 

can be seen that the controls are symmetric about t=T/2 as expected. The controls here are scaled 

variables, so that although the maximum relative change shown in the Fig. 7c is more than 50%, the 

ratio of the corresponding real spring deformation is only 18%, which is calculated by Eq.(6), and is 

less than 𝛿̅. There are sudden jumps in Fig. 7c which correspond to the switching control strategy 

discussed in section 3.2. 

The corresponding mass displacement and the reference path is then shown in Fig. 7d. 
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Figure 7. 4th order polynomial as reference trajectory from E1 at (1, 1) to E2 at (-1, -1). (a) Controlled 

transition, (b) Geometry of transition process, (c) Controls actuated through the parameters 𝜇1, 𝜇2 

and 𝜇3, (d) Mass displacements during the transition from E1 to E2 with the reference trajectory and 

actual trajectory. 

We now consider the inverse method to reconfigure the 2 degree-of-freedom beam model with the 4th 

order polynomial to approximate a transition crossing the potential barrier E1 between E3 and E4. The 

approximate path can be seen in Fig. 8(a) and the corresponding shape of the structure during the 

transition from E3 to E4 is shown in Fig. 8(b). The corresponding controls 𝜇1, 𝜇2 and 𝜇3  are shown in 

Fig. 8(c) and the corresponding mass displacement and the reference path shown in Fig. 8(d).  

We now use the evaluation criteria discussed in Section 3.3 to investigate the energy requirements of 

the transitions of the simple smart structure model. For example, the energy requirement needed to 

overcome the potential barrier at equilibrium E1 is clearly greater than that passing through E3, as shown 

in Fig. 9. The energy for transitions through E1 is of order 25% higher than that for transitions through 

E3, as expected. 
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Figure 8. 4th order polynomial reference trajectory as reference trajectory from E3 at (-2/3, 2/3) to 

E4 at (2/3, -2/3). (a) Controlled transition, (b) Geometry of transition process, (c) Controls actuated 

through the parameters 𝜇1, 𝜇2 and 𝜇3, (d) Mass displacements during the transition from E3 to E4 

with the reference trajectory and actual trajectory. 
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Figure 9. Comparison of energy input for different reconfigurations. 

3.5. Extending the order of the polynomial 
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In order to evaluate the polynomial method further, a set of higher order polynomials can be used which 

can reduce the effective energy required for reconfiguration. We can therefore add additional boundary 

conditions to construct a higher order reference polynomial. Considering the transition from E1 at (1, 1) 

to E2 at (-1, -1) as an example we define 

 [𝒒̈∗(0) 𝒒̈∗(T)] = [
0 0
0 0

] (45) 

Then, the only remaining free parameter to define the reference polynomial is again the total 

reconfiguration duration T. We can therefore obtain an approximate heteroclinic connection defined 

using  

 𝒒∗(𝑡) = 𝒂𝟎 + 𝒂𝟏𝑡 + 𝒂𝟐𝑡
2 + 𝒂𝟑𝑡

3 + 𝒂𝟒𝑡
4 + 𝒂𝟓𝑡

5 + 𝒂𝟔𝑡
6             (46) 

Using the inverse control method we can generate another approximate heteroclinic connection as 

shown in Fig. 10(a), where the controller tracks the approximate trajectory defined by the 6th order 

polynomial. The corresponding controls 𝜇1, 𝜇2 and 𝜇3 are shown in Fig. 10(b). 
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Figure 10. 6th order polynomial as reference trajectory from E1 at (1, 1) to E2 at (-1, -1). (a) 

Controlled transition, (b) Controls actuated through the parameters 𝜇1, 𝜇2 and 𝜇3. 

Then, we can use the energy evaluation criteria in order to track the approximate trajectory through E3, 

where the total energy input to the process can be seen in Fig. 11. The numerical results demonstrate 

that with the higher order polynomial less energy is required for the reconfiguration process.  
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Figure 11. Comparison of energy input to track different approximate trajectories. 

We now add additional target waypoints so that we can use these points to construct a more accurate 

polynomial to approximate the exact heteroclinic connection. Here, we will use the energy evaluation 

criteria and an optimisation algorithm to find the location of these waypoints to minimise the total 

energy required. Additional variables will be added based on Eq. (46), as shown in Eq. (47) so that 

 𝒒∗(𝑡) = 𝒂𝟎 + 𝒂𝟏𝑡 + 𝒂𝟐𝑡
2 + 𝒂𝟑𝑡

3 + 𝒂𝟒𝑡
4 + 𝒂𝟓𝑡

5 + 𝒂𝟔𝑡
6 + 𝒂𝟕𝑡

7 + 𝒂𝟖𝑡
8 (47) 

It is difficult to add additional constant a7 and a8 from simple geometric considerations. However, two 

time points T/4 and 3T/4 (where T is again the reconfiguration duration) are selected as fixed waypoints. 

Then, the location of the two target waypoints are chosen by using an optimisation algorithm. Therefore, 

an 8th order polynomial can be defined as the reference trajectory and we use the fmincon function in 

Matlab, which is a nonlinear multivariable optimiser which can find the minimum of a constrained 

function [25]. We would envisage using a simple numerical search algorithm to optimise the waypoint 

location in a real smart structure using heteroclinic connections. Using the optimisation algorithm, the 

improved numerical results can be seen in Fig. 12(a), showing the heteroclinic connection approximated 

with an 8th order polynomial where the constant gain matrices are again 𝑔11 = 𝑔21 = 0.25,  𝑔12 =

𝑔22 = 0.75. Figure 12(b) illustrates the corresponding shape of the structure during the transition from 

E1 to E2 and the corresponding controls 𝜇1, 𝜇2 are 𝜇3 are shown in Fig. 12(c). It can be seen that the 

controls are again symmetric about t=T/2. The corresponding mass displacement and the reference path 

is shown in Fig. 12(d). 
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Figure 12. 8th order polynomials as reference trajectory from E1 at (1, 1) to E2 at (-1, -1). (a) 

Controlled transition, (b) Geometry of transition process, (c) Controls actuated through the 

parameters 𝜇1, 𝜇2 and 𝜇3, (d) Mass displacements during the transition from E1 to E2 with reference 

trajectory and actual trajectory. 

The energy evaluation criteria can then be used to measure the total energy required for the 

reconfiguration process, as can be seen in Fig. 13. From Fig. 13 it can be seen that the initial assumptions 

on the order of the polynomial which is used to approximate the heteroclinic connection is key.  We 

can use a higher order polynomial as a reference trajectory to reconfigure structure with significantly 

less energy input, but requiring a numerical search for optimisation.    
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Figure 13. Comparison of energy input to track different approximate trajectories with varying 

polynomial degree. 

Now, we will consider the influence of the total reconfiguration duration T, which is the only remaining 

free parameter to define the reference polynomials. Using the same energy evaluation criteria we can 

find the relationship between total reconfiguration duration and the energy requirements. Figure 14 

shows five distinct curves which define five types of reference trajectory with different manoeuvre 

durations considered. There is an evident sharp decrease to an optimum, minimum energy duration and 

then a slow increase as the manoeuvre duration grows. For this example we can therefore identify the 

optimum manoeuvre duration T. It can again be seen that the transition through E1 needs more energy 

than the transition through E3 with the same order polynomial and the same manoeuvre duration as 

expected. This demonstrates that the higher order polynomial can significantly improve the reference 

trajectory for reconfiguring the smart structure model.  
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Figure 14. Energy required for reconfiguration as a function of reconfiguration duration. 

4. Three mass chain 

4.1. 3 mass chain model 
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In order to further explore the possibility of reconfiguring smart structures using reference polynomials, 

a more complex three mass chain with four linear springs will now be considered, with the springs 

clamped at both ends as shown in Fig. 15. This more complex problem greatly increases the number of 

equilibria in the system and the difficulty of finding an exact heteroclinic connection by purely 

numerical means. The dynamics of the chain are firstly obtained from Eqs. (2-3) as  

 𝑞1̇ = 𝑝1 (48) 

 𝑝1̇ = 𝜇1𝑞1 − 𝑞1
3 + 𝜇2(𝑞1 − 𝑞2) − (𝑞1 − 𝑞2)

3 (49) 

 𝑞2̇ = 𝑝2 (50) 

 𝑝2̇ = 𝜇3(𝑞2 − 𝑞3) − (𝑞2 − 𝑞3)
3 − 𝜇2(𝑞1 − 𝑞2) + (𝑞1 − 𝑞2)

3 (51) 

 𝑞3̇ = 𝑝3 (52) 

 𝑝3̇ = 𝜇4𝑞3 − 𝑞3
3 − 𝜇3(𝑞2 − 𝑞3) + (𝑞2 − 𝑞3)

3 (53) 
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Figure 15. 3 degree-of-freedom bucking beam model. 

Solving Eqs. (48-53) for equilibria, the location of the equilibria can be found as shown in Table 2 for 

the parameter set, 𝜇1=1, 𝜇2=1.5, 𝜇3=1.5 and 𝜇4=1 along with the eigenvalue spectrum associated with 

each equilibrium, as discussed in Section 3. It can be seen from Table 2 that the system possesses 1 

unstable equilibrium E0, where the potential has a global maximum; 20 unstable equilibria where the 

potential has several saddles, and 6 stable equilibria where the potential has a local minimum. The 

location of these equilibria and potential surfaces can be seen in Fig.16 and Fig.17, respectively. 



22 

 

 Saddle

 Minimum

 Maximum

-1

0

1

-1

0

1

-2

-1

0
1

2

q
3

q
2q

1

 

Figure 16. 27 equilibria (21 unstable equilibria and 6 stable equilibria) 
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Figure 17. Potential contour with Saddles. (a) Potential -0.5 with E1 and E2, (b) Potential -0.482 

with E23 to E26,  (c) Potential -1.125 with E3 and E4,  (d) Potential -0.844 with E11 and E22. 
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Table 2. Stability properties of the 27 equilibria of a three mass chain with 𝜇1=1, 𝜇2=1.5, 𝜇3=1.5 and 𝜇4=1. 

(S - Saddle, C - Centre) 

Point 𝑞̃1 𝑞̃2 𝑞̃3 𝜆1,2 𝜆3,4 𝜆5,6 V Type 

E0 0 0 0 ±0.784 ±2.210 ±1.581 0 S× S× S 

E1 1 1 1 ±2 ± 0.707i ±1.225i -0.5  S× C× C 

E2 -1 -1 -1 ±2 ± 0.707i ±1.225i -0.5   S× C × C 

E3 0 √6 2⁄  0 ±0.831 ±2.948i ± 1.414i -1.125   S× C × C 

E4 0 -√6 2⁄  0 ±0.831 ±2.948i ± 1.414i -1.125  S× C× C 

E5 1 √6 2⁄ + 1 1 ±3.126i ± 1.108i ±2.236i -1.625  C× C× C 

E6 1 1 − √6 2⁄  1 ±3.126i ± 1.108i ±2.236i -1.625  C× C× C 

E7 -1 −√6 2⁄ − 1 -1 ±3.126i ± 1.108i ±2.236i -1.625  C× C× C 

E8 -1 √6 2⁄ − 1 -1 ±3.126i ± 1.108i ±2.236i -1.625  C× C× C 

E9 √5 2⁄  0 -√5 2⁄  ±2.818i ±1.248i ±2.236i -1.563  C× C× C 

E10 -√5 2⁄  0 √5 2⁄  ±2.818i ±1.248i ±2.236i -1.563  C× C ×C 

E11 (√5 + 1) 4⁄  1 (1 − √5) 4⁄  ±2.525i ±0.487i ±1.365 -0.844  S× C× C 

E12 (1 − √5) 4⁄  1 (√5 + 1) 4⁄  ±2.525i ±0.487i ±1.365 -0.844  S× C× C 

E13 (√5 − 1) 4⁄  -1 −(√5 + 1) 4⁄  ±2.525i ±0.487i ±1.365 -0.844  S× C× C 

E14 −(√5 + 1) 4⁄  -1 (√5 − 1) 4⁄  ±2.525i ±0.487i ±1.365 -0.844  S× C× C 

E15 (√5 + 1) 4⁄  -0.5 (1 − √5) 4⁄  ±2.707i ± 0.376i ±1.648 -0.844  S× C× C 

E16 (1 − √5) 4⁄  -0.5 (√5 + 1) 4⁄  ±2.707i ± 0.376i ±1.648 -0.844  S× C× C 

E17 −(√5 + 1) 4⁄  0.5 (√5 − 1) 4⁄  ±2.707i ± 0.376i ±1.648 -0.844  S× C× C 

E18 (√5 − 1) 4⁄  0.5 −(√5 + 1) 4⁄  ±2.707i ± 0.376i ±1.648 -0.844  S× C× C 

E19 −√14 7⁄  3√14 14⁄  √14 7⁄  ±2.669i ±0.308 ±1.474 -0.844  S× S× C 

E20 √14 7⁄  3√14 14⁄  −√14 7⁄  ±2.669i ±0.308 ±1.474 -0.844  S× S× C 

E21 −√14 7⁄  −3√14 14⁄  √14 7⁄  ±2.669i ±0.308 ±1.474 -0.844  S× S× C 

E22 √14 7⁄  −3√14 14⁄  −√14 7⁄  ±2.669i ±0.308 ±1.474 -0.844  S× S× C 

E23 0.61914 0.88641 1.15367 ±0.734 ±1.888 ±1.450i -0.482  S× S× C 

E24 -0.61914 -0.88641 -1.15367 ±0.734 ±1.888 ±1.450i -0.482  S× S× C 

E25 1.15367 0.88641 0.61914 ±0.734 ±1.888 ±1.450i -0.482  S× S× C 

E26 -1.15367 -0.88641 -0.61914 ±0.734 ±1.888 ±1.450i -0.482  S× S× C 

 

4.2. Numerical solution 

We first use the 4th order polynomial to approximate a heteroclinic connection through E10 between E12 

and E13. We can therefore define conditions on the polynomial which approximate the heteroclinic 

connection, viz 
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 [𝒒∗(0) 𝒒∗(𝑇 2⁄ ) 𝒒∗(T) 𝒒̇∗(0) 𝒒̇∗(T)] =

[
 
 
 
 
−0.309

−1.118

1
0

0.809

1.118
−0.809 −1 0.309

0
0

0
0

0
0 ]

 
 
 
 
T

 (54) 

The manoeuvre duration is again set as T=20 and the constant gains are defined as 𝑔11 = 𝑔21 = 0.25,  

𝑔12 = 𝑔22 = 0.75. The approximate heteroclinic connection can be seen in Fig. 18(a), where the 

controller tracks the approximate trajectory defined by the 4th order polynomials. The corresponding 

shape of the structure during the transition from E12 to E13 is shown in Fig. 18(b). The labels in Fig. 

18(b) present the transition process corresponding to the positions marked in Fig. 18(a), while the 

corresponding controls 𝜇1 , 𝜇2 , 𝜇3  and 𝜇4  are shown in Fig. 18(c). The corresponding mass 

displacements and the reference path is shown in Fig. 18(d). 
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Figure 18. 4th order polynomials as reference trajectory from unstable equilibrium E12 to unstable 

equilibrium E13 (a) Controlled transition, (b) Geometry of transition process, (c) Controls actuated 

through parameters 𝜇1, 𝜇2, 𝜇3 and 𝜇4, (d) Mass displacements during the transition from E12 to E13 

with the reference trajectories. 

Then, the method discussed in Section 3.5 is used to construct an 8th order polynomial with the 

additional conditions 
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 [𝒒̈∗(0) 𝒒̈∗(T)] = [
0 0
0 0
0 0

] (55) 

Moreover, using the optimisation algorithm, Fig. 19(a) shows the heteroclinic connection approximated 

with the 8th order polynomial, where the gains are 𝑔11 = 𝑔21 = 0.25,  𝑔12 = 𝑔22 = 0.75. Figure 19(b) 

illustrates the corresponding shape of the structure during the transition from E12 to E13 and the 

corresponding controls 𝜇1, 𝜇2, 𝜇3 and 𝜇4 are shown in Fig. 19(c). It can be seen that the controls are 

again symmetric about t=T/2 as expected. The corresponding mass displacement and the reference path 

is shown in Fig. 19(d). 
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Figure 19. 8th order polynomials as reference trajectory from unstable equilibrium E12 to unstable 

equilibrium E13 (a) Controlled transition, (b) Geometry of transition process, (c) Controls actuated 

through the coupling parameter 𝜇1, 𝜇2, 𝜇3 and 𝜇4, (d) Mass displacements during the transition 

from E12 to E13 with the reference trajectories. 

The energy evaluation criteria can then be used to measure the total energy input to control the 

reconfiguration process, as can be seen in Fig. 20, with the 4th order polynomials indicated as the solid 

line, and the 8th order polynomials indicated as the dash line. From Fig. 20 it can be seen that a higher 
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order polynomial can be used as a reference trajectory to reconfigure the 3 mass chain with significantly 

less energy input.   

Figure 21 shows three distinct curves which define three types of different order reference trajectory 

with different manoeuvre durations. Again, there is an evident decrease to a minimum energy duration 

and then an increase as the manoeuvre duration grows similarly to the two mass problem, again as 

expected. 
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Figure 20. Comparison of energy input to track different approximate trajectories. 
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Figure 21. Comparison of energy to track different approximate trajectories. 

 

5. Conclusions 

A new concept for the reconfiguration of smart structures using polynomial series to approximate phase 

space connections has been presented. As an application for the method, a simple two mass model is 

firstly investigated and then a relatively complex 3 mass model used to verify that polynomial series 

can offer efficient reference trajectories between unstable equilibria. In addition, inverse control 
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methods have been investigated to control the model for reconfiguration from one equilibrium state to 

another. Then an energy evaluation criteria has been employed to determine the performance of the 

different reference trajectories used and demonstrate that more efficient and accurate reference 

trajectories can be expressed by higher order polynomials. While the models used in the paper are 

relatively simple, they provide an approach to provide insights into low energy reconfiguration which 

can be extended to achieve reconfiguration of real smart structures.  
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