110 research outputs found

    Nonlocal Models in Biology and Life Sciences: Sources, Developments, and Applications

    Full text link
    Nonlocality is important in realistic mathematical models of physical and biological systems at small-length scales. It characterizes the properties of two individuals located in different locations. This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including models for brain dynamics that provide us with an important tool to better understand neurodegenerative diseases. In addition, we have discussed nonlocal modelling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales applied to nanotechnology to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.Comment: 71 page

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Hybrid segmentation method with confidence region detection for tumor identification

    Get PDF
    Segmentation methods can mutually exclude the location of the tumor. However, the challenge of complex location or incomplete identification is located in segmentation challenge dataset. Identificationof tumor location is difficult due to the variation of intensities in MRI image. Vairation of intensity extends up to edema. Confidence Region with Contour Detection identifies the variation of intensities and level set algorithm (Region Scale Fitting) is used to delineate among the region of inner and outer of the tumor. Automatic feature selection method is required due to data complexity. An improved Self Organization Feature Map. Method is required. Weighted SOM Map selects a deterministic feature. This feature is one higher trained accuracy feature. When this specific feature is combines with cluster therefore it is known as deterministic feature clustering. This method gives confidence element. Confidence Region with Contour detection is facing the issue due to extended variations of intensities. These intensities are segmented by hybrid SOM Pixel Labelling with Reduce Cluster Membership and Deterministic Feature Clustering. This hyhbrid method segments the complex tumor intensities. This method produces a potential cluster which is achieved through the hybrid of three unsupervised learning techniques. Hybrid cluster method segments the tumor region. Extended intensities are also segmented by this hybrid approach. Above methods are validated on MICCAI BraTs brain tumor dataset, this is a segmentation challenge dataset. Proposed hybrid algorithm is efficient and it's accuracy can be seen with testing parameters like Dice Overlap Index, Jaccard Tanimoto Coefficient Index, Mean Squared Error and Peak Signal to Noise Ratio. Dice OverlapIndex is 98%, Jaccard Index is 96 percent, Mean Squared Error is 0.06 and Peak Signal To Noise ratio is 18db. The performance of the suggested algorithm is compared to other state of the art

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Women in Science 2017

    Get PDF
    Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. Women in Science 2017 summarizes research done by Smith College’s SURF Program participants during the summer of 2017. 151 students participated in SURF (144 hosted on campus and nearby eld sites), supervised by 58 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants summarized their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1006/thumbnail.jp

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    VII Workshop on Computational Data Analysis and Numerical Methods

    Get PDF
    Dear participants, colleagues and friends, it is a great honour and a privilege to give you all a warmest welcome to the VII Workshop on Computational Data Analysis and Numerical Methods (VII WCDANM), which is organized by the Polytechnic Institute of Tomar (located in the center of Portugal in the beautiful city of Tomar), with the support of some Portuguese research centers, hoping that the final result may exceed the expectations of the participants, sponsors and organizers. Due to the worldwide pandemic caused by the COVID-19 virus, for the first time, this meeting will be transmitted through videoconference (webminar). Nevertheless, the important contributions of Adélia Sequeira (University of Lisbon, Portugal), Sílvia Barbeiro (University of Coimbra, Portugal), Malay Banerjee (Indian Instituto of Techonology Kampur, India) and Indranhil Ghosh (University of North Carolina at Wilmington, USA) as Plenary Speakers, the high scientific level of oral and poster presentations and an active audience will certainly contribute to the success of the meeting. Part of the accepted papers (theoretical and applied) by the VII WCDANM involve big data, data mining, data science and machine learning, in different areas of research, some giving emphasis to coronavirus. A very special thanks to this small, yet important, scientific community, since this event could not be possible without any of these essential and complementary parts. This year, there is also the possibility to attend a course on ŞModeling Partial Least Squares Structural Equations (PLS-SEM) using SmartPLSŤ given by Christian M. Ringle ((TUHH) Hamburg University of Technology, Germany), who kindly and readily accepted our invitation and to whom we are very grateful. A special acknowledgment is also due to the Members of the Executive, Scientific and Organizing Committees. In particular, Anuj Mubayi (Arizona StateUniversity,USA),MilanStehlík(Johannes KeplerUniversity,Austria), AnaNata,IsabelPitacasandManuelaFernandes(hostsfromthePolytechnic Institute of Tomar, Portugal), A. Manuela Gonçalves (University of Minho, Portugal), Teresa Oliveira (Aberta University) and Fernando Carapau (University of Évora, Portugal) have been relentless in search for a balanced, broad and interesting program, having achieved an excellent result. For the third consecutive year, the Journal of Applied Statistics (Taylor & Francis) and Neural Computing and Applications (Springer) are also associated to the event, being extremely important in the dissemination of the scientific results achieved at the meeting. Given the above, it is a pleasure to be ”together” with all of you in this web conference, hoping it may provide an intellectual stimulus and an opportunity for the scientific community to jointly work and disseminate scientific research, namely presenting approaches that may contribute to the solution of the pandemic we are experiencing in the expectation that the present might be past in the near future
    corecore