5,013 research outputs found

    Satellite networking integration in the 5G ecosystem: Research trends and open challenges

    Get PDF
    The envisioned 5G ecosystem will be composed of heterogeneous networks based on different technologies and communication means, including satellite communication networks. The latter can help increase the capabilities of terrestrial networks, especially in terms of higher coverage, reliability, and availability, contributing to the achievement of some of the 5G KPIs. However, technological changes are not immediate. Many current satellite communication networks are based on proprietary hardware, which hinders the integration with future 5G terrestrial networks as well as the adoption of new protocols and algorithms. On the other hand, the two main paradigms that are emerging in the networking scenario \u2014 software defined networking (SDN) and network functions virtualization \u2014 can change this perspective. In this respect, this article presents first an overview of the main research works in the field of SDN satellite networks in order to understand the already proposed solutions. Then some open challenges are described in light of the network slicing concept by 5G virtualization, along with a possible roadmap including different network virtualization levels. The remaining unsolved problems are related to the development and deployment of a complete integration of satellite components in the 5G ecosystem

    AI for Zero-Touch Management of Satellite Networks in B5G and 6G Infrastructures

    Get PDF
    Satellite Communication (SatCom) networks are become more and more integrated with the terrestrial telecommunication infrastructure. In this paper, we shows the current status of the still ongoing European Space Agency (ESA) project”Data-driven Network Controller Orchestration for Real time Network Management-ANChOR”. In particular, we propose a Long Short-Term Memory (LSTM)based methodology to drive the dynamic selection of the optimal satellite gateway station, which will be performed by combining different kinds of information (i.e. traffic profile, network and weather conditions). Some preliminary results on the real world dataset shows the effectiveness of the proposed approach

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Gateway diversity for a future high throughput satellite system

    Get PDF
    The continuous increase of traffic demands for satellite networks motivates the evolution of the telecommunication satellite technology towards wider channels and multiple beam operation with frequency re-use across the coverage. This is made possible by the use of higher frequency bands. Recent research projects 1,2 have investigated multi-beam coverages with more than 200 user beams operated in Ka band, to offer very large data throughputs over Europe. Since 2012, the European Commission project Broadband Access via integrated Terrestrial and Satellite systems (BATS) has explored a similar concept based on a dual satellite solution offering around 302 user beams over EU27 and Turkey, targeting 2020 timeframe, see Figure 1. In all these systems, so as to maximize the user link capacity, the whole civil band allocated to Fixed Satellite Services (FSS) in Ka band (20/30 GHz) is dedicated to the user links. The feeder links thus have to be operated in another band. An attractive option is to rely on Q/V bands (30/40 GHz) to provide the gateway-to-satellite links. Despite the large available bandwidths in Q/V band (5 GHz in each direction), the very large user aggregated bandwidths are required to implement several tens of gateways to provide the necessary capacity
    • …
    corecore