740 research outputs found

    Social network analytics and visualization: Dynamic topic-based influence analysis in evolving micro-blogs

    Get PDF
    Influence Analysis is one of the well-known areas of Social Network Analysis. However, discovering influencers from micro-blog networks based on topics has gained recent popularity due to its specificity. Besides, these data networks are massive, continuous and evolving. Therefore, to address the above challenges we propose a dynamic framework for topic modelling and identifying influencers in the same process. It incorporates dynamic sampling, community detection and network statistics over graph data stream from a social media activity management application. Further, we compare the graph measures against each other empirically and observe that there is no evidence of correlation between the sets of users having large number of friends and the users whose posts achieve high acceptance (i.e., highly liked, commented and shared posts). Therefore, we propose a novel approach that incorporates a user's reachability and also acceptability by other users. Consequently, we improve on graph metrics by including a dynamic acceptance score (integrating content quality with network structure) for ranking influencers in micro-blogs. Additionally, we analysed the topic clusters' structure and quality with empirical experiments and visualization.Fundaçao para a Ciência e a Tecnologia, Grant/Award Number: UIDB/50014/202

    Exploratory analysis of textual data streams

    Get PDF
    In this paper, we address exploratory analysis of textual data streams and we propose a bootstrapping process based on a combination of keyword similarity and clustering techniques to: (i) classify documents into fine-grained similarity clusters, based on keyword commonalities; (ii) aggregate similar clusters into larger document collections sharing a richer, more user-prominent keyword set that we call topic; (iii) assimilate newly extracted topics of current bootstrapping cycle with existing topics resulting from previous bootstrapping cycles, by linking similar topics of different time periods, if any, to highlight topic trends and evolution. An analysis framework is also defined enabling the topic-based exploration of the underlying textual data stream according to a thematic perspective and a temporal perspective. The bootstrapping process is evaluated on a real data stream of about 330.000 newspaper articles about politics published by the New York Times from Jan 1st 1900 to Dec 31st 2015

    What’s Happening Around the World? A Survey and Framework on Event Detection Techniques on Twitter

    Full text link
    © 2019, Springer Nature B.V. In the last few years, Twitter has become a popular platform for sharing opinions, experiences, news, and views in real-time. Twitter presents an interesting opportunity for detecting events happening around the world. The content (tweets) published on Twitter are short and pose diverse challenges for detecting and interpreting event-related information. This article provides insights into ongoing research and helps in understanding recent research trends and techniques used for event detection using Twitter data. We classify techniques and methodologies according to event types, orientation of content, event detection tasks, their evaluation, and common practices. We highlight the limitations of existing techniques and accordingly propose solutions to address the shortcomings. We propose a framework called EDoT based on the research trends, common practices, and techniques used for detecting events on Twitter. EDoT can serve as a guideline for developing event detection methods, especially for researchers who are new in this area. We also describe and compare data collection techniques, the effectiveness and shortcomings of various Twitter and non-Twitter-based features, and discuss various evaluation measures and benchmarking methodologies. Finally, we discuss the trends, limitations, and future directions for detecting events on Twitter

    An association rule dynamics and classification approach to event detection and tracking in Twitter.

    Get PDF
    Twitter is a microblogging application used for sending and retrieving instant on-line messages of not more than 140 characters. There has been a surge in Twitter activities since its launch in 2006 as well as steady increase in event detection research on Twitter data (tweets) in recent years. With 284 million monthly active users Twitter has continued to grow both in size and activity. The network is rapidly changing the way global audience source for information and influence the process of journalism [Newman, 2009]. Twitter is now perceived as an information network in addition to being a social network. This explains why traditional news media follow activities on Twitter to enhance their news reports and news updates. Knowing the significance of the network as an information dissemination platform, news media subscribe to Twitter accounts where they post their news headlines and include the link to their on-line news where the full story may be found. Twitter users in some cases, post breaking news on the network before such news are published by traditional news media. This can be ascribed to Twitter subscribers' nearness to location of events. The use of Twitter as a network for information dissemination as well as for opinion expression by different entities is now common. This has also brought with it the issue of computational challenges of extracting newsworthy contents from Twitter noisy data. Considering the enormous volume of data Twitter generates, users append the hashtag (#) symbol as prefix to keywords in tweets. Hashtag labels describe the content of tweets. The use of hashtags also makes it easy to search for and read tweets of interest. The volume of Twitter streaming data makes it imperative to derive Topic Detection and Tracking methods to extract newsworthy topics from tweets. Since hashtags describe and enhance the readability of tweets, this research is developed to show how the appropriate use of hashtags keywords in tweets can demonstrate temporal evolvements of related topic in real-life and consequently enhance Topic Detection and Tracking on Twitter network. We chose to apply our method on Twitter network because of the restricted number of characters per message and for being a network that allows sharing data publicly. More importantly, our choice was based on the fact that hashtags are an inherent component of Twitter. To this end, the aim of this research is to develop, implement and validate a new approach that extracts newsworthy topics from tweets' hashtags of real-life topics over a specified period using Association Rule Mining. We termed our novel methodology Transaction-based Rule Change Mining (TRCM). TRCM is a system built on top of the Apriori method of Association Rule Mining to extract patterns of Association Rules changes in tweets hashtag keywords at different periods of time and to map the extracted keywords to related real-life topic or scenario. To the best of our knowledge, the adoption of dynamics of Association Rules of hashtag co-occurrences has not been explored as a Topic Detection and Tracking method on Twitter. The application of Apriori to hashtags present in tweets at two consecutive period t and t + 1 produces two association rulesets, which represents rules evolvement in the context of this research. A change in rules is discovered by matching every rule in ruleset at time t with those in ruleset at time t + 1. The changes are grouped under four identified rules namely 'New' rules, 'Unexpected Consequent' and 'Unexpected Conditional' rules, 'Emerging' rules and 'Dead' rules. The four rules represent different levels of topic real-life evolvements. For example, the emerging rule represents very important occurrence such as breaking news, while unexpected rules represents unexpected twist of event in an on-going topic. The new rule represents dissimilarity in rules in rulesets at time t and t+1. Finally, the dead rule represents topic that is no longer present on the Twitter network. TRCM revealed the dynamics of Association Rules present in tweets and demonstrates the linkage between the different types of rule dynamics to targeted real-life topics/events. In this research, we conducted experimental studies on tweets from different domains such as sports and politics to test the performance effectiveness of our method. We validated our method, TRCM with carefully chosen ground truth. The outcome of our research experiments include: Identification of 4 rule dynamics in tweets' hashtags namely: New rules, Emerging rules, Unexpected rules and 'Dead' rules using Association Rule Mining. These rules signify how news and events evolved in real-life scenario. Identification of rule evolvements on Twitter network using Rule Trend Analysis and Rule Trace. Detection and tracking of topic evolvements on Twitter using Transaction-based Rule Change Mining TRCM. Identification of how the peculiar features of each TRCM rules affect their performance effectiveness on real datasets

    Stream-dashboard : a big data stream clustering framework with applications to social media streams.

    Get PDF
    Data mining is concerned with detecting patterns of data in raw datasets, which are then used to unearth knowledge that might not have been discovered using conventional querying or statistical methods. This discovered knowledge has been used to empower decision makers in countless applications spanning across many multi-disciplinary areas including business, education, astronomy, security and Information Retrieval to name a few. Many applications generate massive amounts of data continuously and at an increasing rate. This is the case for user activity over social networks such as Facebook and Twitter. This flow of data has been termed, appropriately, a Data Stream, and it introduced a set of new challenges to discover its evolving patterns using data mining techniques. Data stream clustering is concerned with detecting evolving patterns in a data stream using only the similarities between the data points as they arrive without the use of any external information (i.e. unsupervised learning). In this dissertation, we propose a complete and generic framework to simultaneously mine, track and validate clusters in a big data stream (Stream-Dashboard). The proposed framework consists of three main components: an online data stream clustering algorithm, a component for tracking and validation of pattern behavior using regression analysis, and a component that uses the behavioral information about the detected patterns to improve the quality of the clustering algorithm. As a first component, we propose RINO-Streams, an online clustering algorithm that incrementally updates the clustering model using robust statistics and incremental optimization. The second component is a methodology that we call TRACER, which continuously performs a set of statistical tests using regression analysis to track the evolution of the detected clusters, their characteristics and quality metrics. For the last component, we propose a method to build some behavioral profiles for the clustering model over time, that can be used to improve the performance of the online clustering algorithm, such as adapting the initial values of the input parameters. The performance and effectiveness of the proposed framework were validated using extensive experiments, and its use was demonstrated on a challenging real word application, specifically unsupervised mining of evolving cluster stories in one pass from the Twitter social media streams

    Event detection in high throughput social media

    Get PDF
    • …
    corecore