290 research outputs found

    Development of a Power-harnessing Smart Shoe System with Outdoor Navigation

    Get PDF
    The Internet of Things (IoT) and the world of Smart Systems are ushering in an era where people, machines, devices (e.g. sensors) and processes are all interconnected and able to interact seamlessly with one another. Business and IT leaders predict they will see an increase of more than one-third (33%) in revenues from the use of smart technologies over the next five years. Smart system is the future of technology with so many different applications to it. We present in this project a system developed for a more convenient outdoor navigation. It involves the development of a power harnessing smart shoe to aid navigation and reduce the dependency of individuals on maps i.e. the need to constantly look at the maps for direction rather than focusing on the road. The project uses the Arduino UNO microcontroller as the brain box of the designed system. The microcontroller was programed to achieve the various tasks needed in this project. The smart shoe is fitted with piezo-electric crystals which are pressure sensors generating the power required for the system, a Bluetooth module to interface with the mobile application which was programmed specifically for the shoe, and also vibrator motors which act as the output signal that is felt by the user to help inform them which way to turn. This project proffers solutions to the setbacks in navigation of the user with accuracy and focus

    Harnessing energy via piezoelectricity vibration

    Get PDF
    In an effort to eliminate the replacement of the batteries of electronic devices that real difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This represents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This project reviews the current state of research on piezoelectric energy harvesting devices at low frequency (<100 Hz) applications using vibrating motor and the methods that have been develop to improve the power outputs of the piezoelectric energy harvesters. This project study is divided into two main parts which are simulation from the forced vibration data and laboratory experiment on vibrating motor. The simulation results shows that as the acceleration magnitude increases, the average direct voltage also increases from 4.5 mV to 8.1mV and the average power output that could be harnessed also increased from 22.5 μW to 40.5 μW. The experimental work energy harvesting structures focused on a bimorph piezoelectric rectangular plate (two faced PZT layer bonded to a brass substrate) that would be driven by ambient vibration source (motor). Multiple tip mass value on the effect of power generated was investigated in this project. It is shown that motor speed at 100 rpm has the highest power generated both with (1667.21 μW) and without (10.15 μW) the addition of tip mass. Besides, it is also observed as the motor speed increased from 900 rpm to 1000 rpm, lower tip mass value required to optimize the power generated. 20g of tip mass value is required to generate 218.21 μW at motor speed 900 rpm, 10g of tip mass value is required to generate 626.29 μW at motor speed 1200 rpm These power output is sufficient for low powered electronics which can be used in variety of applications as indicated in the literatures reviewed

    Kinetic Energy Harvesting

    Get PDF

    Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT) – A review with focus on mechanical vibrations

    Get PDF
    The paradigm of the Internet of Things (IoT) appears to be the common denominator of all distributed sensing applications, providing connectivity, interoperability and communication of smart entities (e.g. environments, objects) within a pervasive network. The IoT demands for smart, integrated, miniaturised and low-energy wireless nodes, typically powered by non-renewable energy storage units (batteries). The latter aspect poses constraints as batteries have a limited lifetime and often their replacement is impracticable. Availability of zero-power energy-autonomous technologies, able to harvest (i.e. convert) and store part of the energy available in the surrounding environment (vibrations, thermal gradients, electromagnetic waves) into electricity to supply wireless nodes functionality, would fill a significant part of the technology gap limiting the wide diffusion of efficient and cost effective IoT applications. Given the just depicted scenario, the realisation of miniaturised Energy Harvesters (EHs) leveraging on MEMS technology (MicroElectroMechanical-Systems), i.e. EH-MEMS, seems to be a key-enabling solution able to conjugate both main driving requirements of IoT applications, namely, energy-autonomy and miniaturisation/integration.This short review outlines the current state of the art in the field of EH-MEMS, with a specific focus on vibration EHs, i.e. converters capable to convert the mechanical energy scattered in environmental vibrations, into electric power. In particular, the issues in terms of conversion performance arising from EHs scaling down, along with the challenge to extend their operability on a frequency range of vibrations as wider as possible, are going to be discussed in the following. Keywords: Energy Harvesting (EH), MEMS, Internet of Things (IoE), Ultra-Low Power (ULP), Zero-power electronic

    Piezoelectric energy harvesting solutions

    Get PDF
    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions

    A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion

    No full text
    Energy harvesting from vibration for low-power electronics has been investigated intensively in recent years, but rotational energy harvesting is less investigated and still has some challenges. In this paper, a methodology for low-speed rotational energy harvesting using piezoelectric transduction and frequency up-conversion is analysed. The system consists of a piezoelectric cantilever beam with a tip magnet and a rotating magnet on a revolving host. The angular kinetic energy of the host is transferred to the vibration energy of the piezoelectric beam via magnetic coupling between the magnets. Frequency up-conversion is achieved by magnetic plucking, converting low frequency rotation into high frequency vibration of the piezoelectric beam. A distributed-parameter theoretical model is presented to analyse the electromechanical behaviour of the rotational energy harvester. Different configurations and design parameters were investigated to improve the output power of the device. Experimental studies were conducted to validate the theoretical estimation. The results illustrate that the proposed method is a feasible solution to collecting low-speed rotational energy from ambient hosts, such as vehicle tires, micro-turbines and wristwatches

    Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: a Review

    Get PDF
    Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts

    Ceramic Based Intelligent Piezoelectric Energy Harvesting Device

    Get PDF
    corecore