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The paradigm of the Internet of Things (IoT) appears to be the common denominator of all distributed
sensing applications, providing connectivity, interoperability and communication of smart entities (e.g.
environments, objects) within a pervasive network. The IoT demands for smart, integrated, miniaturised
and low-energy wireless nodes, typically powered by non-renewable energy storage units (batteries). The
latter aspect poses constraints as batteries have a limited lifetime and often their replacement is imprac-
ticable. Availability of zero-power energy-autonomous technologies, able to harvest (i.e. convert) and
store part of the energy available in the surrounding environment (vibrations, thermal gradients, electro-
magnetic waves) into electricity to supply wireless nodes functionality, would fill a significant part of the
technology gap limiting the wide diffusion of efficient and cost effective IoT applications. Given the just
depicted scenario, the realisation of miniaturised Energy Harvesters (EHs) leveraging on MEMS technol-
ogy (MicroElectroMechanical-Systems), i.e. EH-MEMS, seems to be a key-enabling solution able to con-
jugate both main driving requirements of IoT applications, namely, energy-autonomy and
miniaturisation/integration.
This short review outlines the current state of the art in the field of EH-MEMS, with a specific focus on

vibration EHs, i.e. converters capable to convert the mechanical energy scattered in environmental vibra-
tions, into electric power. In particular, the issues in terms of conversion performance arising from EHs
scaling down, along with the challenge to extend their operability on a frequency range of vibrations
as wider as possible, are going to be discussed in the following.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We are living in a world where the surrounding environment
and objects supporting us in daily life are seamlessly becoming
more adaptive and interconnected. Services are broader, more cap-
illary, linked together and easy to access. Experiences are tailored
to our preferences and specific (as well as special) needs. The attri-
bute ‘smart’ is now frequently associated to diverse application
fields of science and technology, giving rise to familiar keywords
like Smart Cities, Homes, Objects, etc.
The Internet of Things (IoT) paradigm portrays an ongoing tech-
nology development path through which any object and environ-
ment belonging to our daily life experience, earns its own
identity in the digital world by means of the Internet. The IoT is
based on smart objects/environments with one or more of the fol-
lowing functionalities (Econocom, 2016):

� Self-awareness, i.e. identification, localisation and self-
diagnosis of the object/environment;

� Interaction with the surrounding environment, i.e. data acquisi-
tion (sensing and metering) and actuation;

� Data elaboration, both basic (primitive data aggregation) and
advanced (statistics, forecasts, etc.).

Regardless of the set of functionalities, all the smart objects/
environments must feature data transfer capabilities (wired or
wireless) in order to be networked and framed in the IoT. Despite
the fields of application are widely diverse, it is possible to identify
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macro-areas for which IoT represents the common denominator, as
follows: 1) Smart City/Environment; 2) Smart Home; 3) Smart
Metering/Smart Grid; 4) Smart Building; 5) eHealth; 6) Smart
Logistics; 7) Smart Factory; 8) Smart Asset Management; 9) Smart
Agriculture; 10) Smart Car.

The IoT holds paramount potential to impact on societal and
economic structure worldwide. However, its spreading in the men-
tioned areas will follow difference paces, defined by articulated
technological and competitive factors. Thereafter, the magnitude
of the IoT paradigm is giving rise to numerous projects, training
actions, alliances, fora and standardisation initiatives. This scenario
proves that the IoT attracts attention of the international commu-
nity at research, industrial and entrepreneurial level, as it bears the
potential to stimulate novel business models that will dominate
the future global economy. Most probably, it is because of the per-
ceivable economic impact of the IoT that efforts seem to be mainly
directed toward high-level Information Technology (IT) based
applications (i.e. Software – SW technologies). On the other hand,
less focus is posed on how the progress in modern Microsystem
and semiconductor integrated technologies (i.e. Hardware – HW
technologies) can be blended with the IoT paradigm to sustain it
on the HW infrastructural level, and to fully enable its pervasive-
ness and capillarity in the society of the future. A bright outlook
of this vision is framed by Uckelmann et al. (2011), when stating
that ‘[. . .] an open and accessible infrastructure for a wider adoption
of the IoT is missing’. Likewise, the book indicates that a flexible
and scalable infrastructure is the key requirement for sustainable
and enduring IoT. The target can be reached through integration
of heterogeneous technologies aiming to autonomous objects, e.g.
in terms of self-powering, for which combination of Energy Har-
vesting (EH) and Ultra-Low Power (ULP) technologies play a key-
role (Sekine, 2017; Pennisi, 2016; Kamalinejad et al., 2015). Such
a vision is supported also by the IoT European Research Cluster
(IERC) (Vermesan and Friess, 2014), when stating that ‘The develop-
ment of energy harvesting and storage devices is instrumental to the
realisation of the ubiquitous connectivity that the IoT proclaims [. . .]’.

Being based on Wireless Sensor Networks (WSNs), IoT applica-
tions demand for smart, integrated, miniaturised and low-energy
wireless nodes, typically powered by non-renewable energy stor-
age units (batteries). The latter aspect poses constraints as batter-
ies have a limited lifetime and often their replacement is
impracticable. Availability of zero-power energy-autonomous
technologies would fill a significant part of the technology gap lim-
iting the wide diffusion of efficient and cost effective IoT
applications.

Energy Harvesting (EH), also known as Energy Scavenging (ES),
literally means to extract energy from the surrounding environ-
ment and convert it into electric power. The ambient scattered
energy can typically be attributed to four different sources
(Vullers et al., 2010):

1) Vibration/motion, both human and industrial (e.g. human
pace, domestic/industrial appliances’ vibrations);

2) Thermal energy, both human and industrial (e.g. skin tem-
perature, engine heat);

3) Ambient light, both indoor and outdoor (e.g. artificial light
and sun radiation);

4) Electromagnetic (EM) and Radio Frequency (RF) (e.g. 3G-4G
base stations).

The paper is arranged as follows. After the current section that
introduced the topic of the IoT and of MEMS-based EH, section 2
will frame the current trends in miniaturisation of EHs. Section 3
will provide an overview of the typical power demands and avail-
able environmental energy sources in IoT reference application
scenarios. Section 4 will discuss the state of the art of vibration
Please cite this article in press as: Iannacci, J.. Journal of King Saud University
EH-MEMS, with focus on frequency up-conversion and extension
of operability on wider ranges of mechanical stimuli. Finally, sec-
tion 5 will collect some conclusive considerations.
2. Trends in miniaturisation of Energy Harvesting (EH) devices

Starting from mid ‘90s, the interest of research focused on
energy autonomous strategies for electronic devices. The solution
reported by Kymissis et al. (1998) exploits a piezoelectric converter
housed in athletic shoes, and is one of the first examples of envi-
ronmental EH for powering electronic modules. Since then
research took significant steps forwards, fed by the continuous
decreasing trend in Integrated Circuits (ICs) power consumption,
making the scenario of self-powered (wireless) devices (Roundy
et al., 2004) and traditional batteries replacement possible. Next
challenges for EH are miniaturisation and integration with active
electronics, opening up the floor to massive exploitation of semi-
conductor and Microsystem technologies. Shrinking down dimen-
sions from macro- to micro-domain brings a dowry of pros and
cons. First, devices’ footprint scaling down means reducing har-
vested power, it looking at first sight as a limiting constraint.
Nonetheless, if supply of low-power and ULP electronics is less
and less demanding (as mentioned above), on the other hand,
development of micro-fabrication technologies enables to enhance
EHs’ conversion efficiency. Given the concurrent growing need for
integrated and miniaturised wireless sensors/actuators nodes, cap-
able of energy autonomy and multiple functionalities, as well as
provided with more on-board smart capabilities, in recent years
MEMS, i.e. MicroElectroMechanical-Systems (EH-MEMS), and
semiconductor-based EH has been attracting significant attention
in the research and scientific community (Lallart, 2012; Tan,
2011), and is now indicated as an enabling technology for the IoT
paradigm.

The current state of the art is now going to be briefly sum-
marised for the following categories of EHs: vibration/motion;
thermal; ambient light; EM and RF. Moreover, some considerations
around ULP electronics for power conversion, management and
storage, are also developed.
2.1. Vibration/motion

The common vibration to electric power conversion methods
for EH-MEMS are basically three: piezoelectric, electromagnetic
and electrostatic (Kaźmierski and Beeby, 2010). It was demon-
strated that piezoelectric EH-MEMS can reach output power levels
in the range of 10–50 mW for typical environmental vibrations
(Alamin Dow et al., 2012), or even of more than 100 mW for large
accelerations (Elfrink et al., 2011). An issue to be addressed con-
cerns sensitivity enhancement of EHs in vibration frequency ranges
available in the environment, typically up to 2–4 kHz. Non-linear
elastic behaviour (Hajati et al., 2011) and multi-modality
(Iannacci et al., 2014) seem two promising strategies to extend
the operability of MEMS vibrating EHs.
2.2. Thermal energy

Pyroelectric materials such as AlN generate electrical charges
on their surfaces when undergo temperature changes. Although
AlN is widely characterised against its electrical, mechanical and
piezoelectric properties (Hernando et al., 2008) for actuation and
sensing applications in MEMS/NEMS, i.e. NanoElectroMechanical-
Systems, devices, only few publications discuss pyroelectric prop-
erties (Fuflyigin et al., 2000; Crisman et al., 2005). Successful oper-
ation of thermoelectric EHs in combination with phase change
– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019
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Table 1
Available power densities and typical harvested power levels in IoT application
scenarios, split upon the four main sources (ambient light; vibration/motion; thermal
energy; RF) and typical contexts (indoor/outdoor; human/industrial), as discussed by
Vullers et al. (2010).

Source Source power Harvested power

Ambient Light
Indoor 0.1 mW/cm2 10 lW/cm2

Outdoor 100 mW/cm2 10 mW/cm2

Vibration/Motion
Human 0.5 m at 1 Hz

1 m/s2 at 50 Hz 4 lW/cm2

Industrial 1 m at 5 Hz
10 m/s2 at 1 kHz 100 lW/cm2

Thermal Energy
Human 20 mW/cm2 30 lW/cm2

Industrial 100 mW/cm2 1–10 mW/cm2

RF
GSM Base Station 0.3 lW/cm2 0.1 lW/cm2
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materials powered wireless nodes in aircrafts (Elefsiniotis et al.,
2013).

2.3. Ambient light

Beside innovative EH-MEMS, high power densities are achiev-
able with commercial transducers such as miniaturised Photo-
voltaic (PV) cells (IXYS, 2017). The advantage is the availability of
manageable voltages in very limited footprints (Prabha et al.,
2011). Since research in this field is rather mature, the current
activities in developing zero-power HW platforms that encompass
PV cells are based on the incorporation of EHs as Commercial Off
The Shelf components (COTS).

2.4. EM and RF

RF-based EH consists in converting into DC power the ambient
RF energy (e.g. digital TV, 3G-4G, WiFi). The main challenge is to
provide ultra-compact devices able to operate with high efficiency
in wide dynamic range of the illuminating RF power in a multiband
and multi-polarisation environment. Recently, research on hybrid
(RF plus solar) and conformal (on Polyethylene Terephthalate –
PET substrate) EHs was initiated (Collado and Georgiadis, 2013).
This has to be extended by hybridisation with heterogeneous EHs
(RF plus piezoelectric, RF plus thermoelectric, etc.) and by coupling
EH with Wireless Power Transfer (WPT) technique (Popović et al.,
2013). There are essentially two types of WPT: by near-field cou-
pling or by far-field. Low-power WPT techniques can be used as
an alternative way for powering Cyber-Physical Systems (CPSs)
when too low or no energy can be harvested from other sources
(Takacs et al., 2013, 2014; Vigneau et al., 2014).

2.5. ULP electronics for power conversion, management and storage

Design of m-power converters with high efficiencies and ultra-
low intrinsic power consumption is of extreme interest. Some
works investigated Complementary Metal Oxide Semiconductor
(CMOS) technology as a viable solution for different types of
sources. A m-power converter for thermoelectric EHs was designed
to consume less than 2 mW (Doms et al., 2009). Further reductions
to the sub-mW range (Dallago et al., 2008; Dini et al., 2015) are sig-
nificantly boosting applications of EH. Some works in literature
focus on CMOS multi-source power converters for EH, as e.g. in
Bandyopadhyay and Chandrakasan (2012), where heterogeneous
transducers are handled with a few mW power consumption. An
example of integration of microelectronic substrates, MEMS, and
m-packaging is reported in Aktakka and Najafi (2014). There is a
growing interest for electronic interfaces operating in the sub-
threshold region, where minimum voltage remains currently lim-
ited to a few hundreds mV (Peters et al., 2011). The harvested
energy should also be efficiently stored in low-volumes and made
available upon user application demands. Super-capacitor technol-
ogy (Pech et al., 2010) and nanostructured electrochemical batter-
ies hold the promise of significant improvements.
3. Power requirements and available sources in IoT application
scenarios

Bearing in mind the wide application field of the IoT it is impor-
tant to build at first a rather solid idea concerning the typical
power densities available in reference scenarios. In addition to this
feature, it is also relevant to split such typical values depending on
the specific energy source, among those mentioned earlier in this
work. To this purpose, effective considerations are reported by
Vullers et al. (2010), and are summarised in Table 1. The typical
Please cite this article in press as: Iannacci, J.. Journal of King Saud University
power densities (per unit area) of IoT scenarios are arranged
depending on the four main available sources, i.e. ambient light
(both indoor and outdoor), vibration/motion (human and indus-
trial environment), thermal energy (human and industrial environ-
ment) and RF. Also importantly, distinctions are made between
available densities and the fraction of such power levels that can
be effectively harvested.

As clearly emerges in Table 1, ambient light provides the high-
est power levels to be harvested. However, the situation changes
drastically when passing from outdoor to indoor environments,
as the harvested power density drops from 10 mW/cm2 down to
10 lW/cm2. This makes indoor ambient light source comparable
with vibration/motion and thermal energy sources in their less
favourable context, i.e. human (4 lW/cm2 and 30 lW/cm2, respec-
tively). On the other hand, if one looks at the latter two sources in
industrial application scenarios, power densities that can be har-
vested are definitely more relevant (100 lW/cm2 and 1–10 mW/
cm2, respectively). Differently, the RF source is the one scoring
the lowest levels of power to be harvested (100 nW/cm2).
Nonetheless, it should be kept in mind that such a figure refers
to RF energy casually scattered in the surrounding environment.
Much more efficient harvesting of RF/electromagnetic power can
be achieved by WPT systems, as mentioned earlier in this paper.

Given these considerations around the levels of power density
available to be harvested depending on the type of environmental
source and context, the focus is now moved on the performance of
vibration EHs vs. miniaturisation, and on the typical power
demands of specific IoT applications. To this regard, Fig. 1 is
reported and commented in the following.

As visible in Fig. 1a, the trend in miniaturisation of vibration
EHs brought to an expected shrink-down of performance in terms
of harvested power. Starting from commercially available macro-
EHs (Perpetuum, 2013) able to generate 100 mW, the harvester
power drops to 1 mW for miniaturised EHs (Roundy et al., 2004)
and, furthermore, to 10 lWwhen dealing with EH-MEMS solutions
(Iannacci et al., 2015). However, another important aspect should
be carefully evaluated: the harvester volume drops from 100 cm3

down to 10 mm3, thus opening up the floor to easy employment
and integration within remote sensor node and systems.

To complete this discussion, it is now critical to compare the
power levels made available by different types of vibration EHs
with the power demands of typical IoT applications. To this regard,
Fig. 1b provides important data to be considered (Vullers et al.,
2010). The power levels required by wearable devices, like the clas-
sic wristwatch, are definitely addressable by EH-MEMS. Moreover,
if considering medical devices, like pace makers, and, more impor-
tantly, distributed sensor networks for human body monitoring,
– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019
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Fig. 1. (a) Trend in miniaturisation of vibration EHs, with typical harvested power
vs. EH volume for commercial macro-EHs (Perpetuum, 2013), miniaturised EHs
(Roundy et al., 2004) and EH-MEMS (Iannacci et al., 2015); (b) Trend in power
demands of typical IoT application scenarios (Vullers et al., 2010).
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like Body Area Networks (BANs), falling in the eHealth branch of
the IoT, EH-MEMS are still suitable to provide the necessary oper-
ation power. On the other hand, as the power requirements
increase, as it happens when dealing with portable devices,
Fig. 2. Schematic of the up-conversion frequency mechanism proposed by Fu and Yea
characteristic frequency.
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EH-MEMS are not able anymore to meet the power demands. In
these cases, conventional EHs would definitely be able to meet
such requirement, but the huge obstacle of integration does not
make possible their employment. This means that a key-feature
of EH-MEMS is the possibility to be integrated in low-power and
ULP miniaturised systems, as long as the power demands are
met. In conclusion, if one mistakenly thinks to power a smartphone
by means of EH-MEMS, of course the exploitation of microsystem
technologies leads to complete failure. However, when dealing
with ULP sensing/monitoring applications, typical of the IoT,
EH-MEMS are able to meet, on one side, power demands, by pro-
viding, on the other hand, the fundamental added value of small
volumes and, therefore, of ease of integration. Eventually, it must
also be highlighted that traditional EHs do not represent a viable
option in such application contexts, despite over-dimensioned in
terms of power levels.
4. State of the art of miniaturised (MEMS) vibration EHs

As mentioned before, the most common vibration to electrical
power conversion methods for EH-MEMS are basically three:
piezoelectric, electromagnetic and electrostatic (Kaźmierski and
Beeby, 2010). In the first case, the piezoelectric effect is exploited
to extract electricity from the mechanical vibration of a suspended
proof-mass (Erturk and Inman, 2011). In electromagnetic scav-
engers, instead, the oscillation of a permanent magnet induces an
electric current in a coil (Tao et al., 2012). Finally, the electrostatic
transduction is based on charge displacement in two capacitor
electrodes in relative movement (Liu et al., 2012). Piezoelectric
conversion in the micro-domain exhibits power densities that are
even larger than traditional macro devices, as reported in (Tan,
2011). Differently, electromagnetic (Cugat et al., 2003) and electro-
static micro-devices are in general less performing, despite also
less mature, if compared to piezoelectric solutions (Tan, 2011),
and thereby still admit considerable margins of improvement.

Another issue arising from miniaturisation of EHs is the scaling
of operating frequency. As is well known, resonant frequency of a
vibrating device increases when its mass and geometry are shrunk
tman (2017), able to make the cantilevered piezoelectric EH freely resonate at its

– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019
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(Kaźmierski and Beeby, 2010), while most part of ambient vibra-
tion energy is available below a few kHz (e.g. busy street, car
engine, industrial/domestic appliance, etc.) (Roundy et al., 2004).
State of the art solutions to circumvent this problem are available,
them being based on up-conversion of ambient vibration fre-
quency until reaching the converter resonance. For instance, this
is achieved by exploiting complementary magnets (Galchev et al.,
2012; Fu and Yeatman, 2017). In particular, in the work of Fu
and Yeatman (2017) a piezoelectric cantilevered EH with a magnet
placed on the free tip, is placed above a rotating plate also provided
with a magnet, as shown in the schematic in Fig. 2.

When the plate rotates (low-frequency), the magnet interacts
with the one on the tip of the cantilever, and the latter one freely
vibrates at its characteristic frequency (higher than plate’s rota-
tion) thus converting mechanical into electrical energy. The EH is
able to generate up to 65 lW of Root Mean Square (RMS) power,
for mechanical vibrations up to 12 Hz. The cantilever is 33.5 mm
long, 2 mm wide, 250 lm thick, and the converter is closed on a
resistive load of 180 kO.

Other approaches to up-convert the frequency of vibrations are
based on designing the EH mechanical structure so that snap (Fu
et al., 2012; Zorlu et al., 2011) and buckling induced pulses
(Chamanian et al., 2012) are imposed to the micro-converter. Addi-
tional solutions directed to widen EHs vibration spectrum of sensi-
tivity are also discussed in literature. By making the elastic
behaviour of a vibrating mass non-linear, device frequency
response exhibits a chaotic behaviour (Duffing mode resonance)
(Halvorsen, 2012), extending the frequency range of operability
and, in turn, the level of extracted power (Hajati et al., 2011;
Goldschmidtboeing et al., 2009). Hybrid solutions relying on piezo-
electric/electromagnetic energy converters, also featuring fre-
quency up-conversion by means of folded cantilevered
structures, are also discussed in literature (Kwon et al., 2017)
Moreover, tuning of the EH resonant frequency is also studied to
maximise extraction in the widest possible range of operability
(Todorov et al., 2011; Podder et al., 2017).

Concerning technology, the scientific literature is populated by
findings in the field of material science and thin-film deposition
techniques, resulting in relevant improvements in power conver-
sion of vibration EHs. Starting from piezoelectric materials, the
optimisation of deposition conditions (e.g. temperature, grain
Fig. 3. 3D schematic of the electrostatic EH-ME
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growth) (Akiyama et al., 2009; Zukauskaite et al., 2012) and in pat-
terning of layers (i.e. interdigitated) (Chidambaram et al., 2012)
reflects in large enhancements of piezoelectric response. Concern-
ing electrostatic (i.e. capacitive) EHs, the conversion capabilities
are importantly boosted by deposition of densely charged electrets,
i.e. permanently charged/polarised dielectric layers (Hagiwara
et al., 2012; Suzuki et al., 2012). Finally, miniaturised electromag-
netic EHs, previously considered to be not successful because of
scaling issues, started to benefit from the development of efficient
techniques for patterning (Suzuki et al., 2012) and bonding (Tao
et al., 2012) of thin layers with improved magnetic properties,
increasing the magnet to coil coupling, and, in turn, the EHs
performance.

Given this rather extensive overview of the main functional and
technological solutions to improve the power conversion capabili-
ties of miniaturised (MEMS) vibration EHs, some recent examples
of harvesters’ realisation are now going to be listed.

The work reported by Lu et al. (2016) proposes an EH-MEMS,
based on interdigitated fingers and electret layer, for the conver-
sion of energy by means el electrostatic coupling. The 3D sche-
matic of the device is reported in Fig. 3.

The device, whose footprint is 1 cm2, is capable to harvest more
than 1 lW in the range 59-148 Hz, and more than 0.5 lW in the
range 14–152 Hz, when subjected to an RMS acceleration of 2 g.
A similar approach is followed by Iannacci et al. (2013). In this case,
the seismic mass is anchored in its centre, by means of bow-shaped
deformable suspensions. The whole device is realised in a surface
micromachining technology, normally employed to manufacture
RF-MEMS devices (Iannacci et al., 2016a, 2016b).

Concerning EH-MEMS devices exploiting the piezoelectric
transduction effect, an example is reported by Iannacci et al.
(2016c). It is based on a toggle-type mechanical resonator concept,
originally exploited and investigated in the realisation of push/pull
driven RF-MEMS variable capacitors (varactors) and switches
(Sordo et al., 2013). The toggle-type resonator features a rectangu-
lar deformable membrane, anchored at four points, nearby the cen-
tral region of the longer edges. Two seismic masses are connected
along the membrane short edges. A microphotograph of a physical
toggle-type piezoelectric EH-MEMS is reported in Fig. 4a. The top
metallisation, implementing the surface electrode that collects
charges generated at the interface with Aluminium Nitride (AlN)
MS concept discussed by Lu et al. (2016).

– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019
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Fig. 4. (a) Microphotograph of the toggle-type EH-MEMS discussed by Iannacci
et al. (2016c); (b) Simulated 3D schematic of the toggle when the central membrane
is deformed. The colour scale indicates the normal in-plane strain distribution at
resonance.

Fig. 5. Measured vs. simulated power conversion response of the toggle EH-MEMS (I
acceleration levels.
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and the lines to redistributed electrical signals out of the resonator,
are visible.

The dynamic behaviour of the toggle resonator is shown in
Fig. 4b, where the in-plane mechanical strain distribution is dis-
played (colour scale) on the surface of the 3D schematic, when
simulated (via a Finite Element Method – FEM tool) at resonance.
As expected, the maximum strain concentration takes place in
the deformable membrane, in the vicinity of the four mechanical
anchoring points, i.e. where the toggle resonator is fixed to the sur-
rounding Silicon frame. This is the area where the mechanical into
electrical energy conversion is more effective. Fig. 5 reports the
experimental vs. simulated power response of the toggle-type
EH-MEMS nearby resonance (about 1.52 kHz), when loaded on
1 MO resistor and subjected to different accelerations.

The tested devices provided up to 396 nW RMS power at reso-
nance (�1.52 kHz) when stimulated with 1.3 g sinusoidal acceler-
ation, at ambient pressure. Thanks to the reduced EH-MEMS
volume of 1.94 mm3, Normalised Power Density (NPD) figures of
about 240 lW/g2/cm3 are achieved.

Apart from the need of up-converting the operation frequency
of EH-MEMS, already discussed before, a very crucial aspect is
achieving good power conversion characteristics in a frequency
range of mechanical vibrations as wide as possible. As a matter
of fact, the main motivating driver lying beneath the requirement
of wideband EHs, is the one of exploiting the same converters in a
broad variety of application scenarios, where the frequency (and
amplitude) of available environmental vibrations can significantly
annacci et al., 2016c) around resonance (�1.52 kHz), when subjected to different

– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019
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Fig. 6. 3D schematic of the array of EHs proposed by Wang et al. (2017). The holes
of different diameter on 5 (out of 6) cantilevers make each of them provided with a
different proof mass and, therefore, fundamental resonant frequency.

Fig. 7. Deformed shape (colour scale) of an FLC EH-MEMS at resonance, as reported
by Iannacci et al. (2014).
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vary. The approaches and solutions discussed in literature to
achieve operation of EHs on wider input frequency ranges are var-
ious. Essentially, the best of conversion performance is achieved
when the EH is stimulated by a mechanical vibration at (or very
close to) the fundamental resonant frequency. Therefore, extend-
ing the operation range of a certain EH means adding more
mechanical degrees of freedom to the structure and introducing,
in turn, more resonant frequencies in the reasonable vicinity of
the fundamental one.
Fig. 8. Deformation of a single petal of the FLC EH-MEMS measured with a LDV (
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The solution proposed by Zhang et al. (2016) relies on a dual
resonant structure based on out-of-plane gap closing scheme, real-
ising an EH-MEMS based on electrostatic conversion with dimen-
sion of 13 mm by 20 mm. The mass and spring constant of each
resonating structure is slightly modified with respect to the other
one. Therefore, the whole structure exhibits two resonant frequen-
cies, thus leading the EH to the encouraging converted power
levels in the range of 1.06–3.24 lW, when an external acceleration
of 1 g is imposed, over the frequency range from about 140 Hz to
190 Hz.

Another approach to increase the operation frequency band
consists in duplicating the EH in an array-based scheme, in which
each mechanical mass-spring resonator has a slightly different
behaviour with respect to all the others. In other words, the overall
device is an array of different EHs, each with a unique fundamental
resonant frequency (Saadon and Wahab, 2015; Wang et al., 2017).
In particular, the AlN piezoelectric EH proposed by Wang et al.
(2017) features six cantilevers, arranged in pairs, with an anchor-
ing rim in the middle and the free ends oriented toward peripheral
directions, as shown in the 3D schematic reported in Fig. 6.

Holes of different diameter are opened on 5 (out of 6) can-
tilevers, in correspondence to the seismic mass at the free end. This
makes each of them resonating at a different frequency, thus mak-
ing the EH working in a vibration range from about 860 Hz to
925 Hz, and providing a peak-power of 82 lW (closed-loop condi-
tion) when 2 g acceleration is imposed to the device.

A different approach aimed to extend the frequency operability
band of EH-MEMS is proposed by Iannacci et al. (2014, 2015,
2016d) and Iannacci and Sordo (2016). In this case, the mechanical
resonator is not arrayed with variated dimension, but its geometry
is made more complex to include more mechanical degrees of free-
dom and, in turn, to exhibit multiple resonant modes. The device,
because of its particular shape, is named Four-Leaf Clover (FLC).
A simulated 3D schematic of the FLC in a deformed configuration
is reported in Fig. 7.

The FLC is composed by four petals, each of which formed by a
double cascaded mass-spring system, kept suspended by four slen-
der beams or tapered structures. The device exploits AlN piezoelec-
tric material, deposited on the top surface, to convert mechanical
into electrical energy. The FLC EH-MEMS, whose diameter is about
8 mm, exhibits several resonant modes, as observed by means of
Laser Doppler Vibrometer (LDV) measurements performed on fab-
ricated samples, and reported in Fig. 8 and Fig. 9.

The FLC resonant modes start from frequencies as low as
�200 Hz and the converted power levels are expected to be around
10 lW (Iannacci et al., 2016d).
Iannacci et al., 2015). The colour scale represents the vertical displacement.
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Fig. 9. Vertical displacement of the FLC EH-MEMS stimulated with a shaking stage and measured with a LDV (Iannacci et al., 2016d). Multiple resonant modes are visible.

8 J. Iannacci / Journal of King Saud University – Science xxx (2017) xxx–xxx
To conclude this section, an additional solution at device level is
proposed by Liu et al. (2014), with reference to an electromagnetic
miniaturised EH. The device works in the frequency range from
82 Hz to 146 Hz, with power densities as high as 5.6 � 10�8 W/
cm3. Additional examples of electromagnetic EH-MEMS are dis-
cussed in details by Tan et al. (2017).

5. Conclusions

Nowadays, the paradigm of the Internet of Things (IoT) is iden-
tified as the common denominator of all modern and future ‘smart’
applications that leverage on distributed and remote sensing func-
tionalities. Nonetheless, the pronounced pervasivity demanded
from IoT applications poses articulated challenges at hardware
level, where the aspects of energy demand and availability are
among the most critical to be handled. Development of zero-
power energy-autonomous technologies, able to harvest (i.e. con-
vert) and store part of the energy scattered in the surrounding
environment (vibrations, thermal gradients, electromagnetic
waves) into electricity to supply wireless nodes functionality,
would fill a significant part of the technology gap limiting the wide
diffusion of efficient and cost effective IoT applications. Given this
scenario, the realisation of miniaturised Energy Harvesters (EHs)
leveraging on MEMS (MicroElectroMechanical-Systems) technol-
ogy, i.e. EH-MEMS, seems to be a key-enabling solution able to con-
jugate both main driving requirements of IoT applications, namely,
energy-autonomy and miniaturisation/integration.

This short review outlined the current state of the art in the
field of EH-MEMS, with a specific focus on vibration EHs, i.e.
devices capable to convert the mechanical energy scattered in
environmental vibrations, into electric power. In particular, the
issues in terms of conversion performance arising from EHs scaling
down, along with the challenge to extend their operability across a
frequency range of vibrations as wider as possible, were addressed
and discussed.

References

Akiyama, M., Kano, K., Teshigahara, A., 2009. Influence of growth temperature and
scandium concentration on piezoelectric response of scandium aluminum
nitride alloy thin films. Appl. Phys. Lett. 95, 1–3.

Aktakka, E., Najafi, K., 2014. A micro inertial energy harvesting platform with self-
supplied power management circuit for autonomous wireless sensor nodes.
IEEE J. Solid-State Circuits 49, 2017–2029.
Please cite this article in press as: Iannacci, J.. Journal of King Saud University
Alamin Dow, A.B., Schneider, M., Koo, D., Al-Rubaye, H.A., Bittner, A., Schmid, U.,
Kherani, N., 2012. Modeling the performance of a micromachined piezoelectric
energy harvester. Springer Microsystem Technologies 18, 1035–1043.

Bandyopadhyay, S., Chandrakasan, A., 2012. Platform architecture for solar, thermal,
and vibration energy combining with MPPT and single inductor. IEEE J. Solid-
State Circuits 47, 2199–2215.

Chamanian, S., Bahrami, M., Zangabad, R.P., Khodaei, M., Zarbakhsh, P., 2012.
Wideband capacitive energy harvester based on mechanical frequency-up
conversion. Proc. of IEEE Sensors Applications Symposium SAS, Brescia, pp. 1–4.

Chidambaram, N., Mazzalai, A., Muralt, P., 2012. Comparison of lead zirconate
titanate (PZT) thin films for MEMS energy harvester with interdigitated and
parallel plate electrodes. Proc. of ISAF/ECAPD/PFM, Aveiro, pp. 1–4.

Collado, A., Georgiadis, A., 2013. Conformal hybrid solar and electromagnetic (EM)
energy harvesting rectenna. IEEE Trans. Circuits Syst. 60, 2225–2234.

Crisman, E.E., Derov, J.S., Drehman, A.J., Gregory, O.J., 2005. Large pyroelectric
response from reactively sputtered aluminum nitride thin films. Electrochem.
Solid-State Lett. 8, H31–H32.

Cugat, O., Delamare, J., Reyne, G., 2003. Magnetic micro-actuators and systems
(MAGMAS). IEEE Transaction on Magnetics 39, 3607–3612.

Dallago, E., Miatton, D., Venchi, G., Bottarel, V., Frattini, G., Ricotti, G., Schipani, M.,
2008. Electronic interface for Piezoelectric Energy Scavenging System. Proc. of
ESSCIRC, Edinburgh, pp. 402–405.

Dini, M., Romani, A., Filippi, M., Bottarel, V., Ricotti, G., Tartagni, M., 2015. A nano-
current power management IC for multiple heterogeneous energy harvesting
sources. IEEE Transaction on Power Electronics 30, 5665–5680.

Doms, I., Merken, P., Van Hoof, C., Mertens, R.P., 2009. Capacitive power
management circuit for micropower thermoelectric generators with a 1.4 mA
controller. IEEE J. Solid-State Circuits 44, 2824–2833.

Econocom, 2016. How the Internet of Things is revolutionising business models.
https://blog.econocom.com/en/blog/how-the-internet-of-things-is-
revolutionising-business-models/ (accessed 28.03.17).

Elefsiniotis, A., Samson, D., Becker, T., Schmid, U., 2013. Investigation on the
performance of thermoelectric energy harvesters under real flight conditions.
Springer Journal of Electronic Materials 42, 2301–2305.

Elfrink, R., Matova, S., de Nooijer, C., Jambunathan, M., Goedbloed, M., van de
Molengraft, J., Pop, V., Vullers, R.J.M., Renaud, M., van Schaijk, R., 2011. Shock
induced energy harvesting with a MEMS harvester for automotive applications.
Proc. of IEEE IEDM, Washington, pp. 1–4.

Erturk, A., Inman, D.J., 2011. Piezoelectric Energy Harvesting. John Wiley & Sons,
Hoboken.

Fu H., Yeatman, E.M., 2017. Broadband rotational energy harvesting using bistable
mechanism and frequency up-conversion. Proc. Of IEEE 30th International
Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 853–856.

Fu, J.L., Nakano, Y., Sorenson, L.D., Ayazi, F., 2012. Multi-axis AlN-on-Silicon
vibration energy harvester with integrated frequency-upconverting
transducers. Proc. of IEEE MEMS, Paris, pp. 1269–1272.

Fuflyigin, V., Salley, E., Osinsky, A., Norris, P., 2000. Pyroelectric Properties of AlN.
Appl. Phys. Lett. 77, 3075.

Galchev, T., Aktakka, E.E., Najafi, K., 2012. A piezoelectric parametric frequency
increased generator for harvesting low-frequency vibrations. IEEE JMEMS 21,
1311–1320.

Goldschmidtboeing, F., Wischke, M., Eichhorn, C., Woias, P., 2009. Nonlinear effects
in piezoelectric vibration harvesters with high coupling factors. Proc. of
PowerMEMS, Washington, pp. 364–367.

Hagiwara, K., Goto, M., Iguchi, Y., Tajima, T., Yasuno, Y., Kodama, H., Kidokoro, K.,
Suzuki, Y., 2012. Electret charging method based on soft X-ray photoionization
for MEMS transducers. IEEE Trans. Dielectrics Elect. Insulat. 19, 1291–1298.
– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019

http://refhub.elsevier.com/S1018-3647(17)30357-9/h0005
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0005
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0005
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0010
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0010
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0010
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0015
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0015
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0015
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0020
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0020
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0020
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0025
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0025
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0025
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0030
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0030
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0030
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0035
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0035
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0040
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0040
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0040
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0045
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0045
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0050
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0050
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0050
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0055
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0055
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0055
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0060
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0060
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0060
https://blog.econocom.com/en/blog/how-the-internet-of-things-is-revolutionising-business-models/
https://blog.econocom.com/en/blog/how-the-internet-of-things-is-revolutionising-business-models/
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0070
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0070
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0070
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0075
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0075
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0075
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0075
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0080
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0080
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0090
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0090
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0090
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0095
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0095
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0100
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0100
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0100
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0105
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0105
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0105
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0110
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0110
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0110
http://dx.doi.org/10.1016/j.jksus.2017.05.019


J. Iannacci / Journal of King Saud University – Science xxx (2017) xxx–xxx 9
Hajati, A., Bathurst, S.P., Lee, H.J., Kim, S.G., 2011. Design and fabrication of a
nonlinear resonator for ultra wide-bandwidth energy harvesting applications.
Proc. of IEEE MEMS, Cancun, pp. 1301–1304.

Halvorsen, E., 2012. Fundamental issues in nonlinear wide-band vibration energy
harvesting. Nonlinear Sciences, Adaptation and Self-Organizing Systems, p. 5.

Hernando, J., Sánchez-Rojas, J.L., González-Castilla, S., Iborra, E., Ababneh, A.,
Schmid, U., 2008. Simulation and laser vibrometry characterisation of
piezoelectric AlN thin films. J. Appl. Phys. 104, 053502.

Iannacci, J., Sordo, G., 2016. Up-scaled macro-device implementation of a MEMS
wideband vibration piezoelectric energy harvester design concept. Springer
Microsystem Technologies 22, 1639–1651.

Iannacci, J., Sordo, G., Gottardi, M., Kuenzig, T., Schrag, G., Wachutka, G., 2013. An
Energy Harvester concept for electrostatic conversion manufactured in MEMS
surface micromachining technology. Proc. of International Semiconductor
Conference Dresden – Grenoble (ISCDG), Dresden, 1–4.

Iannacci, J., Serra, E., Di Criscienzo, R., Sordo, G., Gottardi, M., Borrielli, A., Bonaldi,
M., Kuenzig, T., Schrag, G., Pandraud, G., Sarro, P.M., 2014. Multi-modal
vibration based MEMS energy harvesters for ultra-low power wireless
functional nodes. Springer Microsystem Technologies 20, 627–640.

Iannacci, J., Sordo, G., Serra, E., Schmid, U., 2015. A novel MEMS-based piezoelectric
multi-modal vibration energy harvester concept to power autonomous remote
sensing nodes for Internet of Things (IoT) applications. Proc. of IEEE SENSORS,
Busan, pp. 1–4.

Iannacci, J., Huhn, M., Tschoban, C., Pötter, H., 2016a. RF-MEMS technology for 5G:
series and shunt attenuator modules demonstrated up to 110 GHz. IEEE
Electron Device Lett. 37, 1336–1339.

Iannacci, J., Huhn, M., Tschoban, C., Pötter, H., 2016b. RF-MEMS Technology for
Future Mobile and High-Frequency Applications: Reconfigurable 8-Bit Power
Attenuator Tested up to 110 GHz. IEEE Electron Device Lett. 37, 1646–1649.

Iannacci, J., Sordo, G., Schneider, M., Schmid, U., Camarda, A., Romani, A., 2016c. A
novel toggle-type MEMS vibration energy harvester for Internet of Things
applications. Proc. of IEEE SENSORS, Orlando, pp. 1–3.

Iannacci, J., Sordo, G., Serra, E., Schmid, U., 2016d. The MEMS four-leaf clover
wideband vibration energy harvesting device: design concept and experimental
verification. Springer Microsystem Technologies 22, 1865–1881.

IXYS, 2017. Solar Cell Products http://www.ixyspower.com/solar.html. accessed
29.03.17.

Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C.M., Guan, Y.L.,
2015. Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag.
53, 102–108.
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Popović, Z., Falkenstein, E.A., Costinett, D., Zane, R., 2013. Low-power far-field
wireless powering for wireless sensors. Proc. IEEE 101, 1397–1407.

Prabha, R.D., Rincón-Mora, G.A., Kim, S., 2011. Harvesting circuits for miniaturised
photovoltaic cells. Proc. of IEEE ISCAS, Rio de Janeiro, pp. 309–312.

Roundy, S., Wright, P.K., Rabaey, J.M., 2004. Energy Scavenging for Wireless Sensor
Networks: With Special Focus on Vibrations. Kluwer Academic Publishers,
Dordrecht.

Saadon, S., Wahab, Y., 2015. From ambient vibrations to green energy source: MEMS
piezoelectric energy harvester for low frequency application. In: Proc. of IEEE
Student Symposium in Biomedical Engineering & Sciences (ISSBES), Shah Alam,
pp. 59–63.

Sekine, K., 2017. Energy-harvesting devices replace batteries in IoT sensors.
http://core.spansion.com/article/energy-harvesting-devices-replace-batteries-
in-iot-sensors/#.WNpdFqIlFaQ (accessed 28.03.17).

Sordo, G., Iannacci, J., Solazzi, F., 2013. An analytical model for the optimization of
toggle-based RF-MEMS varactors tuning range. In: Proc. of International
Semiconductor Conference CAS 2013, Sinaia, pp. 263–266.

Suzuki, M., Matsushita, N., Hirata, T., Yoneya, R., Onishi, J., Wada, T., Takahashi, T.,
Nishida, T., Miki, S., Fujita, T., Kotoge, T., Jiang, Y.G., Uehara, M., Kanda, K.,
Higuchi, K., Maenaka, K., 2012. Electromagnetic energy harvester by using
buried NdFeB. Proc. of IEEE MEMS, Paris, pp. 1221–1224.

Takacs, A., Aubert, H., Belot, D., Diez, H., 2013. Miniaturisation of quadrifilar helical
antenna: impact on efficiency and phase centre position. IET Microwaves
Antennas Propag. 7, 202–207.

Takacs, A., Aubert, H., Fredon, S., Despoisse, L., Blondeaux, H., 2014. Microwave
power harvesting for satellite health monitoring. IEEE Trans. Microw. Theory
Tech. 62, 1090–1098.

Tan, Y.K. (Ed.), 2011. Sustainable Energy Harvesting Technologies – Past, Present
and Future. first ed. InTech, Rijeka.

Tan, Y., Dong, Y., Wang, X., 2017. Review of MEMS electromagnetic vibration energy
harvester. IEEE J. Microelectromech. Syst. 26, 1–16.

Tao, K., Ding, G., Wang, P., Yang, Z., Wang, Y., 2012. Fully integrated micro
electromagnetic vibration energy harvesters with micro-patterning of bonded
magnets. Proc. of IEEE MEMS, Paris, pp. 1237–1240.

Todorov, G., Valtchev, S., Todorov, T., Ivanov, I., Klaassens, B., 2011. Tuning
techniques for kinetic MEMS energy harvesters. Proc. of IEEE INTELEC,
Amsterdam, pp. 1–6.

Uckelmann, D., Harrison, M., Michahelles, F. (Eds.), 2011. Architecting the Internet
of Things. first ed. Springer, Berlin.

Vermesan, O., Friess, P. (Eds.), 2014. Internet of Things Applications – From Research
and Innovation to Market Deployment. first ed. River Publishers, Aalborg.

Vigneau, G., Cheikh, M., Benbouhout, R., Bouguern, S., Takacs, A., 2014. Power source
evaluation of a wireless power transfer system. In: Proc. Of IEEE Wireless Power
Transfer Conference, Jeju, pp. 9–12.

Vullers, R.J.M., Schaijk, R., Visser, H.J., Penders, J., Hoof, C.V., 2010. Energy Harvesting
for Autonomous Wireless Sensor Networks. IEEE Solid-State Circuits Magazine
2, 29–38.

Wang, N., Sun, C., Siow, L.Y., Ji, H., Chang, P., Zhang, Q., Gu, Y., 2017. AlN wideband
energy harvesters with wafer-level vacuum packaging utilizing three-wafer
bonding. Proc. of IEEE 30th International Conference on Micro Electro
Mechanical Systems (MEMS), Las Vegas, 841–844.

Zhang, Y., Luo, A., Xu, Y., Wang, T., Wang, F., 2016. Wideband MEMS electrostatic
energy harvester with dual resonant structure. Proc. of IEEE SENSORS, Orlando,
pp. 1–3.

Zorlu, O., Topal, E.T., Külah, H., 2011. A vibration-based electromagnetic energy
harvester using mechanical frequency up-conversion method. IEEE Sens. J. 11,
481–488.

Zukauskaite, A., Wingqvist, G., Palisaitis, J., Jensen, J., Persson, Per O.Å., Matloub, R.,
Muralt, P., Kim, Y., Birch, J., Hultman, L., 2012. Microstructure and dielectric
properties of piezoelectric magnetron sputtered w ScxAl1 xN thin films. J. Appl.
Phys. 111, 1–7.
– Science (2017), http://dx.doi.org/10.1016/j.jksus.2017.05.019

http://refhub.elsevier.com/S1018-3647(17)30357-9/h0115
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0115
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0115
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0120
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0120
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0125
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0125
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0125
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0130
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0130
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0130
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0140
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0140
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0140
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0140
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0145
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0145
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0145
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0145
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0150
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0150
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0150
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0155
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0155
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0155
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0160
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0160
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0160
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0165
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0165
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0165
http://www.elsevier.com/xml/linking-roles/text/html
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0175
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0175
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0175
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0180
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0180
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0190
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0190
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0190
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0195
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0200
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0200
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0200
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0205
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0205
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0215
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0215
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0215
http://www.sensorsmag.com/energy-harvesting/powering-iot-applications-energy-harvesting-23469
http://www.sensorsmag.com/energy-harvesting/powering-iot-applications-energy-harvesting-23469
http://www.elsevier.com/xml/linking-roles/text/html
http://www.elsevier.com/xml/linking-roles/text/html
http://www.elsevier.com/xml/linking-roles/text/html
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0230
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0230
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0230
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0235
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0235
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0235
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0240
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0240
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0245
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0245
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0250
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0250
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0250
http://core.spansion.com/article/energy-harvesting-devices-replace-batteries-in-iot-sensors/#.WNpdFqIlFaQ
http://core.spansion.com/article/energy-harvesting-devices-replace-batteries-in-iot-sensors/#.WNpdFqIlFaQ
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0270
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0270
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0270
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0270
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0275
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0275
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0275
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0280
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0280
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0280
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0285
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0285
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0290
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0290
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0295
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0295
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0295
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0300
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0300
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0300
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0305
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0305
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0310
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0310
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0335
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0335
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0335
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0340
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0340
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0340
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0345
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0345
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0345
http://refhub.elsevier.com/S1018-3647(17)30357-9/h0345
http://dx.doi.org/10.1016/j.jksus.2017.05.019

	Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT) – A review with focus on mechanical vibrations
	1 Introduction
	2 Trends in miniaturisation of Energy Harvesting (EH) devices
	2.1 Vibration/motion
	2.2 Thermal energy
	2.3 Ambient light
	2.4 EM and RF
	2.5 ULP electronics for power conversion, management and storage

	3 Power requirements and available sources in IoT application scenarios
	4 State of the art of miniaturised (MEMS) vibration EHs
	5 Conclusions
	References


