643,974 research outputs found

    Smart textiles to promote multidisciplinary stem training

    Get PDF
    Smart textiles consist of multi-disciplinary knowledge. Disciplines such as physics, mathematics, material science or electrics is needed in order to be able to design and manufacture a smart textiles product. This is why knowledge in smart textiles may be used to showcase high school and university students in basic years of preparation some applications of technical disciplines they are learning. The Erasmus+ project “Smart textiles for STEM training – Skills4Smartex” is a strategic partnership project for Vocational Education and Training aiming to promote additional knowledge and skills for trainees in technical fields, for a broader understanding of interconnections and application of STEM, via smart textiles. Skills4Smartex is an ongoing project within the period Oct. 2018-Sept. 2020, with a partnership of six research providers in textiles www.skills4smartex.eu. The project has three intellectual outputs: the Guide for smart practices (O1), the Course in smart textiles (O2) and the Dedicated e-learning Instrument (O3). The Guide for smart practices consists in the analysis of a survey with 63 textile companies on partnership level and interviews with 18 companies. Main aim of O1 is to transfer from source site to target sites technical and smart textile best practices and the profile of workforce needed for the future textile industry. The needs analysis achieved within O1will serve to conceive the Course for smart textiles with 42 modules (O2), to be accessed via the Dedicated e-learning Instrument (O3). All outputs are available with free access on the e-learning platform: www.adva2tex.eu/portal

    Smart City Development with Urban Transfer Learning

    Full text link
    Nowadays, the smart city development levels of different cities are still unbalanced. For a large number of cities which just started development, the governments will face a critical cold-start problem: 'how to develop a new smart city service with limited data?'. To address this problem, transfer learning can be leveraged to accelerate the smart city development, which we term the urban transfer learning paradigm. This article investigates the common process of urban transfer learning, aiming to provide city planners and relevant practitioners with guidelines on how to apply this novel learning paradigm. Our guidelines include common transfer strategies to take, general steps to follow, and case studies in public safety, transportation management, etc. We also summarize a few research opportunities and expect this article can attract more researchers to study urban transfer learning

    Big data and smart cities: a public sector organizational learning perspective

    Get PDF
    Public sector organizations (city authorities) have begun to explore ways to exploit big data to provide smarter solutions for cities. The way organizations learn to use new forms of technology has been widely researched. However, many public sector organisations have found themselves in new territory in trying to deploy and integrate this new form of technology (big data) to another fast moving and relatively new concept (smart city). This paper is a cross-sectional scoping study—from two UK smart city initiatives—on the learning processes experienced by elite (top management) stakeholders in the advent and adoption of these two novel concepts. The findings are an experiential narrative account on learning to exploit big data to address issues by developing solutions through smart city initiatives. The findings revealed a set of moves in relation to the exploration and exploitation of big data through smart city initiatives: (a) knowledge finding; (b) knowledge reframing; (c) inter-organization collaborations and (d) ex-post evaluations. Even though this is a time-sensitive scoping study it gives an account on a current state-of-play on the use of big data in public sector organizations for creating smarter cities. This study has implications for practitioners in the smart city domain and contributes to academia by operationalizing and adapting Crossan et al’s (Acad Manag Rev 24(3): 522–537, 1999) 4I model on organizational learning

    Learning objects and learning designs: an integrated system for reusable, adaptive and shareable learning content

    Get PDF
    This paper proposes a system, the Smart Learning Design Framework, designed to support the development of pedagogically sound learning material within an integrated, platform-independent data structure. The system supports sharing, reuse and adaptation of learning material via a metadata-driven philosophy that enables the technicalities of the system to be imperceptible to the author and consumer. The system proposes the use of pedagogically focused metadata to support and guide the author and to adapt and deliver the content to the targeted consumer. A prototype of the proposed system, which provides proof of concept for the novel processes involved, has been developed. The paper describes the Smart Learning Design Framework and places it within the context of alternative learning object models and frameworks to highlight similarities, differences and advantages of the proposed system

    Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices

    Full text link
    Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions
    corecore