3 research outputs found

    BitTorious volunteer: server-side extensions for centrally-managed volunteer storage in BitTorrent swarms

    Get PDF
    abstract: Background Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by the general public, wherein a small portion of each user’s local disk may be used for archival of scientific data. We have implementated the server-side announcement and control portions of this BitTorrent extension into v3.0.0 of the BitTorious portal, upon which compatible clients may be built. Results Automated test cases for the BitTorious Volunteer extensions have been added to the portal’s v3.0.0 release, supporting validation of the “peer affinity” concept and announcement protocol introduced by this specification. Additionally, a separate reference implementation of affinity calculation has been provided in C++ for informaticians wishing to integrate into libtorrent-based projects. Conclusions The BitTorrent “affinity” extensions as provided in the BitTorious portal reference implementation allow data publishers to crowdsource the extreme storage prerequisites for research in “big data” fields. With sufficient awareness and adoption of BitTorious Volunteer-based clients by the general public, the BitTorious portal may be able to provide peta-scale storage resources to the scientific community at relatively insignificant financial cost.The electronic version of this article is the complete one and can be found online at: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0779-

    Estudo do IPFS como protocolo de distribuição de conteúdos em redes veiculares

    Get PDF
    Over the last few years, vehicular ad-hoc networks (VANETs) have been the focus of great progress due to the interest in autonomous vehicles and in distributing content not only between vehicles, but also to the Cloud. Performing a download/upload to/from a vehicle typically requires the existence of a cellular connection, but the costs associated with mobile data transfers in hundreds or thousands of vehicles quickly become prohibitive. A VANET allows the costs to be several orders of magnitude lower - while keeping the same large volumes of data - because it is strongly based in the communication between vehicles (nodes of the network) and the infrastructure. The InterPlanetary File System (IPFS) is a protocol for storing and distributing content, where information is addressed by its content, instead of its location. It was created in 2014 and it seeks to connect all computing devices with the same system of files, comparable to a BitTorrent swarm exchanging Git objects. It has been tested and deployed in wired networks, but never in an environment where nodes have intermittent connectivity, such as a VANET. This work focuses on understanding IPFS, how/if it can be applied to the vehicular network context, and comparing it with other content distribution protocols. In this dissertation, IPFS has been tested in a small and controlled network to understand its working applicability to VANETs. Issues such as neighbor discoverability times and poor hashing performance have been addressed. To compare IPFS with other protocols (such as Veniam’s proprietary solution or BitTorrent) in a relevant way and in a large scale, an emulation platform was created. The tests in this emulator were performed in different times of the day, with a variable number of files and file sizes. Emulated results show that IPFS is on par with Veniam’s custom V2V protocol built specifically for V2V, and greatly outperforms BitTorrent regarding neighbor discoverability and data transfers. An analysis of IPFS’ performance in a real scenario was also conducted, using a subset of STCP’s vehicular network in Oporto, with the support of Veniam. Results from these tests show that IPFS can be used as a content dissemination protocol, showing it is up to the challenge provided by a constantly changing network topology, and achieving throughputs up to 2.8 MB/s, values similar or in some cases even better than Veniam’s proprietary solution.Nos últimos anos, as redes veiculares (VANETs) têm sido o foco de grandes avanços devido ao interesse em veículos autónomos e em distribuir conteúdos, não só entre veículos mas também para a "nuvem" (Cloud). Tipicamente, fazer um download/upload de/para um veículo exige a utilização de uma ligação celular (SIM), mas os custos associados a fazer transferências com dados móveis em centenas ou milhares de veículos rapidamente se tornam proibitivos. Uma VANET permite que estes custos sejam consideravelmente inferiores - mantendo o mesmo volume de dados - pois é fortemente baseada na comunicação entre veículos (nós da rede) e a infraestrutura. O InterPlanetary File System (IPFS - "sistema de ficheiros interplanetário") é um protocolo de armazenamento e distribuição de conteúdos, onde a informação é endereçada pelo conteúdo, em vez da sua localização. Foi criado em 2014 e tem como objetivo ligar todos os dispositivos de computação num só sistema de ficheiros, comparável a um swarm BitTorrent a trocar objetos Git. Já foi testado e usado em redes com fios, mas nunca num ambiente onde os nós têm conetividade intermitente, tal como numa VANET. Este trabalho tem como foco perceber o IPFS, como/se pode ser aplicado ao contexto de rede veicular e compará-lo a outros protocolos de distribuição de conteúdos. Numa primeira fase o IPFS foi testado numa pequena rede controlada, de forma a perceber a sua aplicabilidade às VANETs, e resolver os seus primeiros problemas como os tempos elevados de descoberta de vizinhos e o fraco desempenho de hashing. De modo a poder comparar o IPFS com outros protocolos (tais como a solução proprietária da Veniam ou o BitTorrent) de forma relevante e em grande escala, foi criada uma plataforma de emulação. Os testes neste emulador foram efetuados usando registos de mobilidade e conetividade veicular de alturas diferentes de um dia, com um número variável de ficheiros e tamanhos de ficheiros. Os resultados destes testes mostram que o IPFS está a par do protocolo V2V da Veniam (desenvolvido especificamente para V2V e VANETs), e que o IPFS é significativamente melhor que o BitTorrent no que toca ao tempo de descoberta de vizinhos e transferência de informação. Uma análise do desempenho do IPFS em cenário real também foi efetuada, usando um pequeno conjunto de nós da rede veicular da STCP no Porto, com o apoio da Veniam. Os resultados destes testes demonstram que o IPFS pode ser usado como protocolo de disseminação de conteúdos numa VANET, mostrando-se adequado a uma topologia constantemente sob alteração, e alcançando débitos até 2.8 MB/s, valores parecidos ou nalguns casos superiores aos do protocolo proprietário da Veniam.Mestrado em Engenharia de Computadores e Telemátic

    Infrastructural Security for Virtualized Grid Computing

    Get PDF
    The goal of the grid computing paradigm is to make computer power as easy to access as an electrical power grid. Unlike the power grid, the computer grid uses remote resources located at a service provider. Malicious users can abuse the provided resources, which not only affects their own systems but also those of the provider and others. Resources are utilized in an environment where sensitive programs and data from competitors are processed on shared resources, creating again the potential for misuse. This is one of the main security issues, since in a business environment competitors distrust each other, and the fear of industrial espionage is always present. Currently, human trust is the strategy used to deal with these threats. The relationship between grid users and resource providers ranges from highly trusted to highly untrusted. This wide trust relationship occurs because grid computing itself changed from a research topic with few users to a widely deployed product that included early commercial adoption. The traditional open research communities have very low security requirements, while in contrast, business customers often operate on sensitive data that represents intellectual property; thus, their security demands are very high. In traditional grid computing, most users share the same resources concurrently. Consequently, information regarding other users and their jobs can usually be acquired quite easily. This includes, for example, that a user can see which processes are running on another user´s system. For business users, this is unacceptable since even the meta-data of their jobs is classified. As a consequence, most commercial customers are not convinced that their intellectual property in the form of software and data is protected in the grid. This thesis proposes a novel infrastructural security solution that advances the concept of virtualized grid computing. The work started back in 2007 and led to the development of the XGE, a virtual grid management software. The XGE itself uses operating system virtualization to provide a virtualized landscape. Users’ jobs are no longer executed in a shared manner; they are executed within special sandboxed environments. To satisfy the requirements of a traditional grid setup, the solution can be coupled with an installed scheduler and grid middleware on the grid head node. To protect the prominent grid head node, a novel dual-laned demilitarized zone is introduced to make attacks more difficult. In a traditional grid setup, the head node and the computing nodes are installed in the same network, so a successful attack could also endanger the user´s software and data. While the zone complicates attacks, it is, as all security solutions, not a perfect solution. Therefore, a network intrusion detection system is enhanced with grid specific signatures. A novel software called Fence is introduced that supports end-to-end encryption, which means that all data remains encrypted until it reaches its final destination. It transfers data securely between the user´s computer, the head node and the nodes within the shielded, internal network. A lightweight kernel rootkit detection system assures that only trusted kernel modules can be loaded. It is no longer possible to load untrusted modules such as kernel rootkits. Furthermore, a malware scanner for virtualized grids scans for signs of malware in all running virtual machines. Using virtual machine introspection, that scanner remains invisible for most types of malware and has full access to all system calls on the monitored system. To speed up detection, the load is distributed to multiple detection engines simultaneously. To enable multi-site service-oriented grid applications, the novel concept of public virtual nodes is presented. This is a virtualized grid node with a public IP address shielded by a set of dynamic firewalls. It is possible to create a set of connected, public nodes, either present on one or more remote grid sites. A special web service allows users to modify their own rule set in both directions and in a controlled manner. The main contribution of this thesis is the presentation of solutions that convey the security of grid computing infrastructures. This includes the XGE, a software that transforms a traditional grid into a virtualized grid. Design and implementation details including experimental evaluations are given for all approaches. Nearly all parts of the software are available as open source software. A summary of the contributions and an outlook to future work conclude this thesis
    corecore