61 research outputs found

    Smart Buildings IoT Networks Accuracy Evolution Prediction to Improve Their Reliability Using a Lotka–Volterra Ecosystem Model

    Get PDF
    Internet of Things (IoT) is the paradigm that has largely contributed to the development of smart buildings in our society. This technology makes it possible to monitor all aspects of the smart building and to improve its operation. One of the main challenges encountered by IoT networks is that the the data they collect may be unreliable since IoT devices can lose accuracy for several reasons (sensor wear, sensor aging, poorly constructed buildings, etc.). The aim of our work is to study the evolution of IoT networks over time in smart buildings. The hypothesis we have tested is that, by amplifying the Lotka–Volterra equations as a community of living organisms (an ecosystem model), the reliability of the system and its components can be predicted. This model comprises a set of differential equations that describe the relationship between an IoT network and multiple IoT devices. Based on the Lotka–Volterra model, in this article, we propose a model in which the predators are the non-precision IoT devices and the prey are the precision IoT devices. Furthermore, a third species is introduced, the maintenance staff, which will impact the interaction between both species, helping the prey to survive within the ecosystem. This is the first Lotka–Volterra model that is applied in the field of IoT. Our work establishes a proof of concept in the field and opens a wide spectrum of applications for biology models to be applied in IoT.This paper has been partially supported by the Salamanca Ciudad de Cultura y Saberes Foundation under the Talent Attraction Program (CHROMOSOME project)

    A Multi-Stakeholder Information Model to Drive Process Connectivity In Smart Buildings

    Get PDF
    Smart buildings utilise IoT technology to provide stakeholders with efficient, comfortable, and secure experiences. However, previous studies have primarily focused on the technical aspects of it and how it can address specific stakeholder requirements. This study adopts socio-technical theory principles to propose a model that addresses stakeholders' needs by considering the interrelationship between social and technical subsystems. A systematic literature review and thematic analysis of 43 IoT conceptual frameworks for smart building studies informed the design of a comprehensive conceptual model and IoT framework for smart buildings. The study's findings suggest that addressing stakeholder requirements is essential for developing an information model in smart buildings. A multi-stakeholder information model integrating multiple stakeholders' perspectives enhances information sharing and improves process connectivity between various systems and subsystems. The socio-technical systems framework emphasises the importance of considering technical and social aspects while integrating smart building systems for seamless operation and effectiveness. The study's findings have significant implications for enhancing stakeholders' experience and improving operational efficiency in commercial buildings. The insights from the study can inform smart building systems design to consider all stakeholder requirements holistically, promoting process connectivity in smart buildings. The literature analysis contributed to developing a comprehensive IoT framework, addressing the need for holistic thinking when proposing IoT frameworks for smart buildings by considering different stakeholders in the building

    2023- The Twenty-seventh Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-seventh Annual Symposium of Student Scholars, held on April 18-21, 2023. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1027/thumbnail.jp

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    2021- The Twenty-fifth Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-fifth Annual Symposium of Student Scholars, held on April 29, 2021. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1023/thumbnail.jp

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Smart Buildings IoT Networks Accuracy Evolution Prediction to Improve Their Reliability Using a Lotka–Volterra Ecosystem Model

    No full text
    Internet of Things (IoT) is the paradigm that has largely contributed to the development of smart buildings in our society. This technology makes it possible to monitor all aspects of the smart building and to improve its operation. One of the main challenges encountered by IoT networks is that the the data they collect may be unreliable since IoT devices can lose accuracy for several reasons (sensor wear, sensor aging, poorly constructed buildings, etc.). The aim of our work is to study the evolution of IoT networks over time in smart buildings. The hypothesis we have tested is that, by amplifying the Lotka–Volterra equations as a community of living organisms (an ecosystem model), the reliability of the system and its components can be predicted. This model comprises a set of differential equations that describe the relationship between an IoT network and multiple IoT devices. Based on the Lotka–Volterra model, in this article, we propose a model in which the predators are the non-precision IoT devices and the prey are the precision IoT devices. Furthermore, a third species is introduced, the maintenance staff, which will impact the interaction between both species, helping the prey to survive within the ecosystem. This is the first Lotka–Volterra model that is applied in the field of IoT. Our work establishes a proof of concept in the field and opens a wide spectrum of applications for biology models to be applied in IoT
    corecore