25 research outputs found

    Small-variance asymptotics for Bayesian neural networks

    Get PDF
    Bayesian neural networks (BNNs) are a rich and flexible class of models that have several advantages over standard feedforward networks, but are typically expensive to train on large-scale data. In this thesis, we explore the use of small-variance asymptotics-an approach to yielding fast algorithms from probabilistic models-on various Bayesian neural network models. We first demonstrate how small-variance asymptotics shows precise connections between standard neural networks and BNNs; for example, particular sampling algorithms for BNNs reduce to standard backpropagation in the small-variance limit. We then explore a more complex BNN where the number of hidden units is additionally treated as a random variable in the model. While standard sampling schemes would be too slow to be practical, our asymptotic approach yields a simple method for extending standard backpropagation to the case where the number of hidden units is not fixed. We show on several data sets that the resulting algorithm has benefits over backpropagation on networks with a fixed architecture.2019-01-02T00:00:00

    Crowd Fraud Detection in Internet Advertising

    Full text link

    Discriminative Nonparametric Latent Feature Relational Models with Data Augmentation

    Full text link
    We present a discriminative nonparametric latent feature relational model (LFRM) for link prediction to automatically infer the dimensionality of latent features. Under the generic RegBayes (regularized Bayesian inference) framework, we handily incorporate the prediction loss with probabilistic inference of a Bayesian model; set distinct regularization parameters for different types of links to handle the imbalance issue in real networks; and unify the analysis of both the smooth logistic log-loss and the piecewise linear hinge loss. For the nonconjugate posterior inference, we present a simple Gibbs sampler via data augmentation, without making restricting assumptions as done in variational methods. We further develop an approximate sampler using stochastic gradient Langevin dynamics to handle large networks with hundreds of thousands of entities and millions of links, orders of magnitude larger than what existing LFRM models can process. Extensive studies on various real networks show promising performance.Comment: Accepted by AAAI 201

    Complexity-based classification of software modules

    Get PDF
    Software plays a major role in many organizations. Organizational success depends partially on the quality of software used. In recent years, many researchers have recognized that statistical classification techniques are well-suited to develop software quality prediction models. Different statistical software quality models, using complexity metrics as early indicators of software quality, have been proposed in the past. At a high-level the problem of software categorization is to classify software modules into fault prone and non-fault prone. The focus of this thesis is two-fold. One is to study some selected classification techniques including unsupervised and supervised learning algorithms widely used for software categorization. The second emphasis is to explore a new unsupervised learning model, employing Bayesian and deterministic approaches. Besides, we evaluate and compare experimentally these approaches using a real data set. Our experimental results show that different algorithms lead to different statistically significant results

    Simple low cost causal discovery using mutual information and domain knowledge

    Get PDF
    PhDThis thesis examines causal discovery within datasets, in particular observational datasets where normal experimental manipulation is not possible. A number of machine learning techniques are examined in relation to their use of knowledge and the insights they can provide regarding the situation under study. Their use of prior knowledge and the causal knowledge produced by the learners are examined. Current causal learning algorithms are discussed in terms of their strengths and limitations. The main contribution of the thesis is a new causal learner LUMIN that operates with a polynomial time complexity in both the number of variables and records examined. It makes no prior assumptions about the form of the relationships and is capable of making extensive use of available domain information. This learner is compared to a number of current learning algorithms and it is shown to be competitive with them
    corecore