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SMALL-VARIANCE ASYMPTOTICS FOR BAYESIAN

NEURAL NETWORKS

SIVARAMAKRISHNAN SANKARAPANDIAN

ABSTRACT

Bayesian neural networks (BNNs) are a rich and flexible class of models that have

several advantages over standard feedforward networks, but are typically expensive

to train on large-scale data. In this thesis, we explore the use of small-variance

asymptotics—an approach to yielding fast algorithms from probabilistic models—on

various Bayesian neural network models. We first demonstrate how small-variance

asymptotics shows precise connections between standard neural networks and BNNs;

for example, particular sampling algorithms for BNNs reduce to standard backpropa-

gation in the small-variance limit. We then explore a more complex BNN where the

number of hidden units is additionally treated as a random variable in the model.

While standard sampling schemes would be too slow to be practical, our asymptotic

approach yields a simple method for extending standard backpropagation to the case

where the number of hidden units is not fixed. We show on several data sets that

the resulting algorithm has benefits over backpropagation on networks with a fixed

architecture.
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Chapter 1

Introduction

1.1 Introduction

Bayesian neural networks (BNNs) are a particular kind of neural network in which

weights are treated as random variables and therefore have a probability distribution

over them. They are particularly useful when uncertainties have to be associated with

predictions in the network, to avoid overfitting, and to incorporate prior beliefs about

parameters of the model. Further, as the model itself is fully probabilistic, one can

tap into the rich toolbox of probabilistic graphical models to extend the model in

various ways and in a principled manner. For instance, it is straightforward to extend

a BNN to the case where the model size (i.e., number of hidden units) is not fixed, or

to other situations such as those arising with sequential data or hierarchical models.

Unfortunately, such richness comes at a price: even simple BNN models are difficult

to train, often requiring sophisticated sampling schemes that have difficulty scaling

to large data sets. Indeed, in practical situations one rarely sees BNNs used as the

model of choice.

Our focus in this thesis is to utilize a technique that has recently emerged in the

study of large-scale probabilistic models, namely small-variance asymptotics (SVA),

in order to both study connections between standard neural networks and BNNs as

well as to design new algorithms that feature some of the benefits of BNNs but at

increased scalability. One simple motivation that is used for SVA is to consider a
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standard Gaussian mixture model for clustering. If one fixes the covariance of each

cluster as σI, and examines the behavior of the model as σ → 0, the EM algorithm

becomes the standard k-means algorithm [Kulis and Jordan, 2011] and the negative

log likelihood of the mixture model becomes the k-means objective function. There

has been considerable recent interest in using similar ideas on richer models, including

Bayesian nonparametric models, sequential data models, topic models, supervised

learning settings, and others. In general, applying SVA yields models that retain many

of the properties of the original probabilistic model but are much more scalable.

This thesis is the first to apply SVA in the setting of neural networks. We begin

by demonstrating that a particular standard BNN yields, in the SVA limit, the

loss function for a standard feedforward network, indicating a simple link between

probabilistic and non-probabilistic neural network models. We further demonstrate

that an uncorrected Langevin Monte Carlo algorithm on this model yields standard

backpropagation in the SVA limit, thus demonstrating connections at both the model

and algorithm levels. We then build on this result to explore a richer BNN model

where we allow the number of hidden units to be random. Such a model would be

difficult to scale to practical settings, but we derive an SVA result indicating that

the resulting model asymptotically is equivalent to a neural network loss with an

additional penalty on the number of hidden units in each layer. We derive a simple

extension of backpropagation to optimize the resulting loss function, yielding a more

scalable approach that captures much of the richness of the original BNN.

We then empirically demonstrate that our resulting approach yields a flexible

algorithm for training a neural network whose architecture is not fixed upfront. In

particular, we show that our algorithms achieve comparable or even better performance

than models where we fixed the architecture. Surprisingly, even when we train models

whose architectures are the same as those that our algorithm learns (i.e., we retrain



3

using standard backpropagation on the architectures that our algorithm learns), we

find that our error rates are typically lower, indicating that from an optimization

perspective there may be benefits to training a network by growing neurons. We

believe that our approach will yield further insights in the future to design richer

neural network models inspired by probabilistic counterparts.

1.2 Related work

Small-variance asymptotics has been applied in a number of settings, including

Bayesian nonparametric clustering models, feature learning models, hidden Markov

models, Markov jump processes, SVM classification, dimensionality reduction, dynamic

clustering models, topic models, and others ( [Roychowdhury et al., 2013], [Jiang et al.,

2016] [Wang and Zhu, 2014], [Huggins et al., 2015]). Typically such models yield faster

resulting algorithms while maintaining key properties of the original probabilistic

models. However, to our knowledge, such analysis has not been applied to neural

network models.

Selection of hyperparameters such as the number of hidden units or number of

layers is typically chosen manually through grid search [Hsu et al., ] or through

random search [Bergstra and Bengio, 2012]. These techniques are computationally

expensive, especially if the number of hyperparameters is very large. Bayesian Op-

timization [Snoek et al., 2012] treats particular settings of hyperparameters as a

sample from a Gaussian process, and yields an approach to automatically tuning the

hyperparameters. While this method works well for continuous parameters such as the

learning rate or regularization coefficients, it cannot be used for discrete parameters

such as the number of layers or number of units in a layer.

In terms of automatically choosing the number of units/layers there are two broad

categories of techniques available, namely constructive and destructive techniques. On
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the destructive side, group sparsity regularizers [Alvarez and Salzmann, 2016] can be

used to automatically determine the neurons required from an original network. [Zhou

et al., 2016] applied sparsity constraints into the loss function to remove neurons during

training. These techniques are generally inefficient in that the training is originally

done over a large network and then neurons are pruned. [Hinton et al., 2015,Denil

et al., 2013] are two approaches that consider the redundancy in the weights, thereby

yielding compact networks. [LeCun et al., 1990,Hassibi and Stork, 1993] deal with the

elimination of individual parameters such that there is least effect in the objective

function that is being optimized, but both of these techniques require second derivative

information.

On the constructive side, existing algorithms are mainly based on reinforcement

learning and genetic algorithms. [Stanley and Miikkulainen, 2002,Opitz and Shavlik,

1997, Pujol and Poli, 1998] use genetic algorithms to grow a neural network, but

no algorithms have shown proof of performing better than the hand picked values

for hyperparameters on real world datasets. [Baker et al., 2016] uses reinforcement

learning to build neural network architecture, but this approach requires an additional

network that acts as the agent which selects the appropriate models. In contrast, our

algorithm learns the number of hidden units as the network is being trained.
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Chapter 2

Background

We briefly cover relevant material on Hamiltonian Monte Carlo, Langevin Monte

Carlo, and small-variance asymptotics.

2.0.1 Hamiltonian Monte-Carlo

Hamiltonian Monte-Carlo(HMC) is a sampling method which samples from the target

distribution by simulating a fictitious physical system and is dealt in detail in ( [Neal

et al., 2011], [Neal, 1993]). The potential energy U , kinetic energy K, position p and

momentum q constitute this system. If we wish to sample from a distribution p(q), we

define the potential energy to be the negative log probability density of the underlying

parameters q, kinetic energy to be the negative log probability density of a zero mean

multivariate normal distribution and the Hamiltonian to be the sum of potential and

kinetic energies:

U(q) = − ln(p(q)) + ln(ZU)

K(p) =
pTM−1p

2

H(p, q) = U(q) +K(p). (2.1)
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The evolution of position and momentum variables with time t are determined by the

following differential equations,

dq

dt
= ∂H

∂p
= [M−1p]i

dp

dt
= −∂H

∂q
= − ∂U

∂qi
.

Due to the conservation of Hamiltonian and volume preservation in phase space during

the evolution, the joint distribution of position and momentum variables remain

invariant. Practical implementation of Hamiltonian equations involve discretization

of time using a small step ε. The leap frog method is one of the most widely used

methods for evaluating the evolution of the Hamiltonian system in discrete time steps

ε:

pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂qi
(q(t))

qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂qi
(q(t+ ε)).

Time discretization with non-zero ε introduces numerical errors which do not maintain

the Hamiltonian constant; to correct this error, a Metropolis step is added after every

proposal is made:

min

[
1, exp(−(U(q∗)− U(q))− (K(p∗)−K(p))

]
.

Thus, Hamiltonain Monte Carlo involves sampling random momentum variables from a

multivariate Gaussian distribution, then calculating position variables with the gradient

information from the log probability density of the target variable (while updating

momentum variables) for L steps and then accepting the proposal by calculating the
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change in potential and kinetic energies through a Metropolis acceptance step. In an

intuitive sense, retrieving samples from HMC is equivalent to determining the position

of a frictionless puck that slides over an uneven surface where the height from the

surface in its current position determines its potential energy and kinetic energy is

propotional to its mass.

2.0.2 Langevin Monte-Carlo

If the number of leap frog steps in Hybrid Monte-Carlo is reduced to one, i.e., a new

proposal is made after each leap frog step, then HMC is known as Langevin Monte

Carlo [Neal, 1993]. Since state transitions here are proportional to the step size ε,

Langevin Monte Carlo exhibits random-walk behavior. The update equations for

position and momentum variables in case of LMC are as follows:

q∗i = qi −
ε2

2

∂U

∂qi
(q) + εpi

p∗i = pi −
ε

2

∂U

∂qi
(q)− ε

2

∂U

∂qi
(q∗)

Similar to HMC, discretization error is corrected using a Metropolis acceptance step

after every proposal. If we choose to eliminate the Metropolis acceptance step, then

all the proposals are accepted which becomes known as uncorrected Langevin Monte

Carlo. In this case, the new momentum values proposed every iteration are replaced

immediately by the next iteration, therefore we can remove the momentum values

altogether to arrive at a single update step which is as follows,

q∗i = qi −
ε2

2

∂U

∂qi
(q) + εni where ni ∈ N (0, σn = 1).
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2.0.3 Small-Variance Asymptotics

In a Bayesian model, there are two complementary approaches to applying SVA.

The first approach considers applying asymptotics on the underlying MAP inference

problem; this was developed in [Broderick et al., 2013] with a particular emphasis on

clustering and feature learning models. At a high level, given data X and parameters

θ, one examines the MAP problem argmaxθp(θ|X ), and examines what happens to

this problem when particular variances tend to zero. For instance, suppose we have

a clustering model where the parameters are the assignments z of points to clusters

and means µ of all of the clusters. For the Gaussian case, we define the likelihood

p(x|z,µ) to be a multivariate Gaussian whose mean and variance are given by the

cluster to which x is assigned. The MAP inference problem arises by maximizing the

posterior, p(z,µ|x) ∝ p(x|z,µ)p(z)p(µ), with respect to the parameters z and µ; it

is equivalent to minimize the negative log of the joint probability p(x, z,µ). If we

assume that the variances of each of the clusters is equal to σI, a fairly straightforward

calculation reveals that as σ → 0, the negative log of the joint probability simply

becomes the k-means objective function.

The other approach to SVA involves examining the behavior of an algorithm when

the variances of particular parameters go to zero. In the case of the clustering model,

one can examine the EM algorithm (in the case of a non-Bayesian mixture model)

or sampling steps of a Gibbs sampler (in the case of a Bayesian model) and examine

what happens to the steps of the algorithm as σ → 0. One can obtain the simpler

k-means algorithm in both cases in this manner.

We note that SVA models typically yield much faster alternatives as compared

to algorithms for the original probabilistic models. For example, EM for Gaussian

mixtures scales quadratically in the dimensionality of the data while k-means scales

linearly in the dimensionality. These advantages are even more pronounced for richer
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probabilistic models; for instance, [Broderick et al., 2013] shows that SVA algorithms

can be 1000x faster than sampling algorithms, even on fairly small data sets.

2.1 SVA for Bayesian Neural Networks

As a first step, we consider applying SVA to a standard Bayesian neural network.

Consider a data set X = {(xi, yi)}ni=1, where xi is the i-th data point and yi the

corresponding label. We could be considering either regression or classification as the

underlying prediction task, but for now let us consider the regression task. Let w

comprise the weights of a neural network, and define the likelihood of each data point

as

p(yi|w,xi, σ2) = N (NN(xi;w), σ2),

where NN(xi;w) is the output of a neural network with weights w and input xi. The

yi’s are assumed to be i.i.d. We further define a prior over the weights as p(w) which

could be chosen in various ways, e.g., uniform or Gaussian.

In general, assuming w being independent of xi the goal is to calculate the

posterior distribution of the weights w given the data X . Because we are interested

in performing SVA on this model, we consider the MAP inference task, namely

argmaxwp(w|X , σ2) ∝
[ n∏
i=1

p(yi|w,xi, σ2)

]
p(w).

We can ask what happens to the negative log of the MAP problem as σ → 0 inside

argmax. This is straightforward to compute, particularly due to the fact that the yi

have Gaussian distributions. One can see that decreasing σ causes the impact of the

prior to be lessened, and in the limit there is no contribution to the prior, leading to
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the standard regression loss with respect to w

n∑
i=1

(NN(xi;w)− yi)2,

which is nothing but standard least-squares regression on the output of the neural

network. One can easily extend this to the classification scenario by changing the

likelihood appropriately and applying a similar asymptotic argument.

A more interesting question is whether existing sampling algorithms become

standard neural network backpropagation in the small-variance limit, analogous to

how the EM algorithm becomes the k-means algorithm in the small-variance limit.

Again considering the regression case, we can explore the uncorrected Langevin Monte

Carlo approach to sampling for a Bayesian neural network, and ask what happens to

this sampling algorithm in the limit of small variance.

In case of a standard neural network, the weights are typically trained using

backpropagation,

w ← w − η∂L(NN(xi;w), yi)

∂w
,

where L is the loss function and η is the learning rate. The derivative of the loss

function with respect to weights of the network is found using backpropogation via

the chain rule. For the regression case, we consider the loss function to be the squared

error, but the following connection is generalizable to any loss function.

To employ uncorrected Langevin Monte Carlo as our choice of sampling method

for carrying out inference in a Bayesian neural network, we need to define a potential

energy function for the parameters of the network. Given the likelihood and prior,

the potential energy function becomes the logarithm of the posterior distribution of

the parameters of the network:

U(w) =
n∑
i=1

(NN(xi;w)− yi)2

σ
− ln p(w) + const.
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If we plug in the potential energy function to the update rule of uncorrected LMC,

we obtain the following update rule:

w ← w − ε2

2
· ∂(
∑n

i=1(NN(xi;w)− yi)2/σ − ln p(w))

∂w

+εN (0, σnI).

This now appears similar to the standard backpropagation update but with two

additional terms, one coming from the prior on w and one coming from the Gaussian

noise. If we let ε be a function of σ, namely setting it to ε2σ and thus decreasing ε

as we decrease σ, then in the limit of σ → 0, the influence of the (NN(xi;w)− yi)2

term dominates. Indeed, in the limit the update is equivalent to the standard

backpropagation update rule. Thus, in the small-variance asymptotic limit, the update

rule of uncorrected LMC to this Bayesian neural network becomes the stochastic

gradient descent update to a regular neural network.

2.2 A Dynamic Neural Network Model

Let us now consider a richer Bayesian neural network model where the number of

hidden units is not fixed. From a generative perspective, the standard Bayesian neural

network can be viewed as a generative process where the weights are drawn from the

prior, and then the outputs are generated from the likelihood distribution given the

weights. We can now consider the case where the weights within each layer ` are

further conditioned on a random variable k(`) corresponding to the number of hidden

units in layer `. We will place a Poisson distribution on k(`); assuming there are L
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layers total, this makes the model (in the regression setting) therefore

p(k(`)) = Pois(λ), ` = 1, ..., L

p(w(`)|k(`)) = N (0, Ik(`)), ` = 1, ..., L

p(yi|w,xiσ2) = N (NN(xi;w), σ2),

where w(`) corresponds to the weights in layer `. The definition of the variables

(k(`),w(`)) imply that the joint probability p(k(`),w(`)) = p(w(`)|k(`))p(k(`)).

If we make no further assumptions about the rate parameter λ, then in the small-

variance limit, the prior over the number of units will vanish, as the prior over the

weights vanishes in the standard BNN case, resulting in an ill-defined model. However,

if we assume that λ = exp(−γ/σ2), then observe that

− log p(k(`)|λ) =
γ

σ2
· k + exp(−γ/σ2

p) + log k(`)!

As σ → 0 (inside argmax) as in the previous section, the first term of this expression

dominates; indeed, one can easily see that the MAP inference problem becomes simply

n∑
i=1

(NN(xi;w)− yi)2 + γ ·
L∑
`=1

k(`), (2.2)

that is, the standard regression error with an additional term that regularizes the

number of hidden units per layer.

2.2.1 Algorithm for a dynamic neural network

Now that we have seen that SVA on a BNN with a random number of weights yields

an extension of the standard loss function with an additional penalty on the number

of weights, we can consider algorithms to optimize (2.2). Note here that standard

backpropagation is not appropriate for optimizing this loss function, as it is not clear
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Algorithm 1 Dynamic growing of neural networks

Input: X , Y ,Hl,[UH1 , ...UHl
], γ,prev E = ∞

for e = 1 to E do
Sample w from P (w|X ,Y)
current E = ln(p(Y|X ,w))
if prev E − current E > γ then
H∗ = U [0, Hl]
UH∗ = UH∗ + dM

end if
prev E = current E

end for

how one would dynamically add or remove nodes from the network.

One option is to develop a sampling algorithm for the underlying BNN and then pass

this algorithm through the small-variance limit. Another option is to directly design

an algorithm for minimization of the underlying objective function. We take the latter

approach here, following some other SVA-based algorithms (e.g., BP-means [Broderick

et al., 2013]).

In particular, our algorithm considers starting with a small network of a few nodes

per layer. During training, we consider the change in the loss function that occurs if

we add some number of nodes dM to the network and train on these additional nodes.

If the change in the loss function is greater than γ, the tradeoff parameter from (2.2),

then we keep these new units; otherwise, we maintain the network at its current size.

When adding new nodes to the network, one should train long enough that a reliable

estimate of the change in the loss function is obtained; we train for a full epoch before

deciding whether to accept or reject the new nodes, though it is possible that shorter

training times (e.g., a minibatch) may be sufficient for determining the change in the

loss. When training multiple layers, we choose uniformly at random a single layer at

a time when adding new nodes.
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2.2.2 Adding neurons is equivalent to adding noise

We finish this section by briefly observing that adding new neurons and applying

backpropagation is nearly equivalent to adding Gaussian noise to the gradient, as in

uncorrected LMC. Let us consider a simple three layer network (one input, one hidden

and one output) with the number of units in each layer being Ui, Uh, Uo, respectively.

The weights between the input and hidden layer is denoted as w1, between hidden

layer and output layer as w2, and the activation function is denoted as g(·). The

output of the network for a single input xi is

y∗i = [g(xTi ·w1)]T ·w2.

If we add a unit/neuron to the hidden layer, increasing Uh by one, the output of the

network changes to

y∗imod
= [g(xTi ·w1)]T ·w2 + [g(xTi · a1)]T · a2,

where a1 and a2 denote the added elements to the matrices w1 and w2, respectively,

due to the additional neuron in the hidden layer. For simplicity, let us consider the

L2 loss. The derivative of the loss L with respect to weight w2 of the network before

the addition of neurons is as follows:

∂L
∂w1

= 2([g(xTi ·w1)]T ·w2 − yi).g(xTi ·w1).

After adding the nodes, the update becomes

∂L
∂w1

= 2([g(xTi ·w1)]T ·w2 − yi).g(xTi ·w1)

+ g(xTi · a1)T · a2 · (xTi ·w1)︸ ︷︷ ︸
noise

.
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Since weights are initialized randomly, this additional term can be viewed as a noise

term, similar to noise in uncorrected LMC, with the exception that we apply the

non-linear activation function on top of the noise.

Figure 2·1: The red circles indicate the neurons being added to the
network and their corresponding addition to matrices W(1) and W(2)

are indicated as A(1) and A(2) repectively

2.3 Experiments

We evaluate our proposed algorithm on both single layer and multilayer feed-forward

neural networks. To show the effectiveness our of proposed algorithm, we take datasets

from [Hernández-Lobato and Adams, 2015] and apply our algorithm to it, along with

suitable baselines. We train single layer neural networks for all the datasets in three

different ways: 1) using the same architecture as in [Hernández-Lobato and Adams,

2015], 2) using our dynamic algorithm to grow the number of hidden units starting

with five hidden units, 3) applying standard backpropagation to the architectures

learned by our algorithm. We also train multi-layer networks on MNIST and CIFAR-10

with a fixed number of layers but where the hidden units are grown using our proposed

algorithm.
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Figure 2·2: (From left to right) Regular gradient descent, uncorrected
LMC with Gaussian noise and uncorrected LMC with a non-linear
function applied to Gaussian noise trained to approximate the sine
function. The blue dots indicate the data points and the read line
indicates the true function. The dark green line indicates the prediction
of the algorithms and the shaded portion is ±1 standard deviation from
the mean of the predictive distribution.

2.3.1 Synthetic data

To illustrate empirically that injecting Gaussian noise after passing through a non-linear

function still samples from the posterior distribution, we perform two experiments:

1) we implement Bayesian logistic regression using data generated from a bivariate

Gaussian distribution and sample weights from the posterior distribution using un-

corrected LMC with Gaussian noise and Gaussian noise with a non-linear function

applied to it, as described in Section 2.2.2; 2) we attempt to approximate the sine

function using standard backpropogation, uncorrected LMC with Gaussian noise, and

Gaussian noise with a non-linear function applied.

Similar to [Roychowdhury et al., 2016], we generate 5000 samples from a bivariate

Gaussian with means [1,-1], [-1,1] and unit covariance. We apply a linear transformation

using the weights [-1,1] before grouping them into two classes. Bayesian logistic

regression is performed using uncorrected LMC with Gaussian noise and Gaussian

noise after application of the non-linear activation. We use a learning rate of 1e−3 and
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105 iterations and figure 2·3 shows the traces of both sampling methods. The traces

from both the methods looks similar finally converging to the true values of weights

[-1,1]. We inject Gaussian noise of the form N (0, I) to uncorrected LMC steps before

applying the non-linear function, since weights of the neural networks are initialized

with weights from normal distribution with maximum standard deviation of one.

To further see the effect of the application of a non-linear function to Gaussian

noise in uncorrected LMC, we create a synthetic dataset using 50 random data

points in the interval [0,2π] and their corresponding labels using the sine function.

A neural network with two hidden layers, each having 20 hidden units, is trained

using standard backpropagation, uncorrected LMC, and uncorrected LMC with the

incorporation of the non-linear function. Figure 2·2 shows the prediction results for all

three methods. For both variants of uncorrected LMC, we include the corresponding

predictive distribution, where dark green curve corresponds to the mean and the green

shaded region corresponds to ± one standard deviation. The predictive distribution

looks similar for both variants of uncorrected LMC with similar mean and similar ±

one standard deviation. We calculate the standard deviation from the samples after

200 epochs to allow for the “burn in” period. We use a learning rate of 1e−3 as our

learning rate, Adam optimizer(β1 = 0.9, β2 = 0.999) and 104 epochs.

2.3.2 Regression

In [Hernández-Lobato and Adams, 2015], the authors used an architecture with 50

hidden units for all the datasets except for Year Prediction MSD and Protein structure,

for which they have used 100 hidden units. We use these architectures as baseline fixed

architectures for comparison. We split the dataset into three parts: 60% training, 20%

validation and 20% test. Hyperparameter tuning is done on the validation set and,

during testing, we combine the validation set with training set. We do not perform
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Table 2.1: Results of our proposed algorithm on regression datasets.

Data set N D BP Hidden Proposed Hidden Units BP with HU
Units Algorithm Converged from PA

Concrete 1030 8 5.977±0.2207 50 7.660±0.2613 25 12.346±1.8695
Kin8nm 8192 8 0.091±0.0015 50 0.0870±0.0017 43 0.091±0.0016
Naval Propulsion 11934 16 0.001±0.0001 50 0.004±0.0000 36 0.004±0.0040
Powerplant 9568 4 4.182±0.0402 50 4.114±0.0051 13 4.140±0.0061
Protein 45730 9 4.539±0.0288 100 4.511±0.0009 44 4.618±0.0559
Wine 1599 11 0.645±0.0098 50 0.609±0.0170 14 0.671±0.4421
MSD 515345 90 8.932±NA 100 8.872±NA 92 8.958±NA

any preprocessing and run our proposed algorithm with five initial hidden units.

Figure 2·3: Trace plots of uncorrected LMC with Gaussian noise and
Gaussian noise with the non-linear function applied. Both variants have
the same initialization of weights [2,2] which converge to the true value
of [-1,1].

We perform train-validation-test split five times after randomly shuffling the data

and we include the standard deviation for our results. A single hidden layer is used for

all the datasets and we start with five initial hidden units for our proposed algorithm.

The best RMSE are underlined for each dataset. BP refers to regular back propogation

using stochastic gradient descent. We run our algorithm with rate of increase in hidden

units to be one (i.e., dM = 1) and we keep this value constant throughout the training

period.
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2.3.3 Classification(Fully Connected Neural Networks)

MNIST

To demonstrate that our algorithm works for multi-layer networks, we consider the

task of classifying hand-written digits into 10 classes using the MNIST dataset. We

use a three-layer network for the task and we do not use any preprocessing for the

classification task. Since starting with a small network with five hidden units in each

layer and growing the network with a single unit in each layer is computationally

expensive for training and could lead to poor local optima, we modify our algorithm

to increase the hidden units by a large proportion during the start of training and

gradually reduce this value as the network is trained. We introduce a new discrete

parameter τ to specify the rate of decrease of dM . We use 10000 random images from

the training set as validation set to tune the hyperparameters and during testing, we

merge validation dataset to the training dataset. We use the Adam optimizer with

β1 = 0.9, β2 = 0.999 to train our network.

Table 2.2 shows accuracies of standard backpropogation, our proposed algorithm

and our proposed algorithm with dropout. Our proposed algorithm converges to the

given number of hidden units in the first, second and third hidden layer as shown in

the third column of the table. Even though the accuracy of our proposed algorithm

does not surpass the accuracy by a regular backpropagation, the number of parameters

is much smaller than those used by standard backpropagation. We use dropout of

0.5 in all hidden layers.We also run regular backpropogation(incorporating dropout

in hidden layers) with number of hidden units our algorithm converged to, and the

accuracy is not as good as the proposed algorithm.

To compare the convergence rate of backpropogation and proposed algorithm,

we mark the number of epochs when both reach 98.60 %. To be fair, we initialize

the weights of the network with the same seed and we maintain the same learning
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rate.In [Alvarez and Salzmann, 2016], the authors used group sparsity regularizer over

all the weights corresponding to each neuron thereby arriving at a sparse solution

where weights corresponding to certain neurons are very small. Those neurons

whose weights are negligible can be eliminated to arrive at a compact network. We

also compare our proposed algorithm with the neural network with group sparsity

regularizer(GSR).While the number of parameters are less in case of group sparsity

regularizer, the best accuracy that can be attained is still lower than the proposed

algorithm.

Figure 2·4: Convergence rate of backpropogation and proposed algo-
rithm, red line indicates the number of epochs backpropogation requires
to reach 98.6%(horizontal green line) accuracy and purple line indicates
the same for proposed algorithm
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Algorithm 2 Dynamic growing of neural networks

Input: X , Y ,Hl,[UH1 , ...UHl
], γ,τ ,prev E = ∞

for e = 1 to E do
Sample w from P (w|X ,Y)
current E = ln(p(Y|X ,w))
if prev E − current E > γ then
H∗ = U [0, Hl]
UH∗ = UH∗ + dM

end if
prev E = current E
dM = dM − τ

end for

Table 2.2: Results of our proposed algorithm on MNIST dataset.

Method Accuracy Uh0 , Uh1 , Uh2 No.of
Parameters

BP + DP 98.75 1024-1024-1024 2,910,208
PA + DP 98.72 661-917-937 1,992,960
BP + DP 98.42 661-917-937 1,992,960
GSR 98.39 871-503-972 1,614,923

CIFAR-10

We consider another permutation invariant task of classifying images in the CIFAR-10

dataset into 10 classes. We use a three-layer network similar to MNIST and we

do a preprocessing step of global contrast normalization and do not perform any

pre-training. The strategy followed for hyperparameter optimization is similar to

MNIST, where we take 5000 images at random from the training set for validation.

During testing, we merge the validation set to our training set.

Table 2.3 shows the results of back propagation and proposed algorithm with

dropout of 0.5 added to all hidden layers. We get similar accuracy with 60% fewer

parameters than the standard backpropagation.Similar to MNIST, we run regular

backpropogation(incorporating dropout in hidden layers) with number of hidden units

our algorithm converged to, and the accuracy is not as good as the proposed algorithm.
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Figure 2·5: Evolution of hidden units during training of a 3-layer
network on MNIST with dropout.

2.3.4 Classification(Convolutional Neural Networks)

To illustrate that the proposed algorithm works well even for Convolutional Neural

Networks(CNNs), we create a three layer CNN with a single softmax layer where the

number of filters in each layer are not fixed. We compare the results with regular

fixed architecture CNN trained using backpropogation and we compare the results in

2.4. We use 3x3 filters and stride of 1 in all the layers and every convolutional layer is

followed by maxpool layer with 2x2 filters and stride of 2.



23

Figure 2·6: Evolution of hidden units during training of a 3-layer
network on CIFAR-10 with dropout.

Table 2.3: Results of our proposed algorithm on CIFAR-10 dataset.

Method Accuracy Uh0 , Uh1 , Uh2 No.of
Parameters

BP + DP 57.62 1024-1024-1024 5,253,130
PA + DP 57.47 759-563-909 3,279,822
BP + DP 55.55 759-563-909 3,279,822
GSR 53.07 1010-1015-716 4,861,770

Table 2.4: Results of our proposed algorithm on MNIST using CNN.

Method Accuracy Uh0 , Uh1 , Uh2 No.of
Parameters

BP + DP 99.55 48-48-24 4,920
PA + DP 99.23 16-27-13 2,584
BP + DP 99.11 16-27-13 2,584
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Chapter 3

Conclusions

3.1 Conclusion

In this thesis, we explored applying small-variance asymptotic analysis to Bayesian

neural networks. While SVA has been applied to a number of unsupervised learning

problems, such as clustering and feature learning, to our knowledge this is the first

work that considers utilizing SVA in neural networks. As a first step, we demonstrated

connections between standard neural networks and Bayesian neural networks, showing

that the loss function for a standard neural network may be obtained in the small-

variance limit of a Bayesian neural network. We then considered a richer BNN where

the number of hidden units is treated as a random variable in the model. In the

small-variance limit, such a model yields a simple loss function where the standard

loss is augmented with a penalty on the number of hidden units.

We developed a straightforward algorithm for local convergence of this loss function,

and compared this algorithm with standard backpropagation on several data sets.

In particular, we found that the proposed algorithm is successful at finding good

settings of the parameters, often using far fewer nodes per layer than standard fixed

architectures. It is our hope that such analysis may lead further insight into designing

richer neural network models.
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