8 research outputs found

    Transitivity is not a (big) restriction on homotopy types

    Full text link
    For every simplicial complex K there exists a vertex-transitive simplicial complex homotopy equivalent to a wedge of copies of K with some copies of the circle. It follows that every simplicial complex can occur as a homotopy wedge summand in some vertex-transitive complex. One can even demand that the vertex-transitive complex is the clique complex of a Cayley graph or that it is facet-transitive

    On perturbations of highly connected dyadic matroids

    Get PDF
    Geelen, Gerards, and Whittle [3] announced the following result: let q=pkq = p^k be a prime power, and let M\mathcal{M} be a proper minor-closed class of GF(q)\mathrm{GF}(q)-representable matroids, which does not contain PG(r−1,p)\mathrm{PG}(r-1,p) for sufficiently high rr. There exist integers k,tk, t such that every vertically kk-connected matroid in M\mathcal{M} is a rank-(≀t)(\leq t) perturbation of a frame matroid or the dual of a frame matroid over GF(q)\mathrm{GF}(q). They further announced a characterization of the perturbations through the introduction of subfield templates and frame templates. We show a family of dyadic matroids that form a counterexample to this result. We offer several weaker conjectures to replace the ones in [3], discuss consequences for some published papers, and discuss the impact of these new conjectures on the structure of frame templates.Comment: Version 3 has a new title and a few other minor corrections; 38 pages, including a 6-page Jupyter notebook that contains SageMath code and that is also available in the ancillary file

    Dynamic cage survey

    Get PDF

    Small vertex-transitive graphs of given degree and girth

    No full text

    Templates for Representable Matroids

    Get PDF
    The matroid structure theory of Geelen, Gerards, and Whittle has led to a hypothesis that a highly connected member of a minor-closed class of matroids representable over a finite field is a mild modification (known as a perturbation) of a frame matroid, the dual of a frame matroid, or a matroid representable over a proper subfield. They introduced the notion of a template to describe these perturbations in more detail. In this dissertation, we determine these templates for various classes and use them to prove results about representability, extremal functions, and excluded minors. Chapter 1 gives a brief introduction to matroids and matroid structure theory. Chapters 2 and 3 analyze this hypothesis of Geelen, Gerards, and Whittle and propose some refined hypotheses. In Chapter 3, we define frame templates and discuss various notions of template equivalence. Chapter 4 gives some details on how templates relate to each other. We define a preorder on the set of frame templates over a finite field, and we determine the minimal nontrivial templates with respect to this preorder. We also study in significant depth a specific type of template that is pertinent to many applications. Chapters 5 and 6 apply the results of Chapters 3 and 4 to several subclasses of the binary matroids and the quaternary matroids---those matroids representable over the fields of two and four elements, respectively. Two of the classes we study in Chapter 5 are the even-cycle matroids and the even-cut matroids. Each of these classes has hundreds of excluded minors. We show that, for highly connected matroids, two or three excluded minors suffice. We also show that Seymour\u27s 1-Flowing Conjecture holds for sufficiently highly connected matroids. In Chapter 6, we completely characterize the highly connected members of the class of golden-mean matroids and several other closely related classes of quaternary matroids. This leads to a determination of the extremal functions for these classes, verifying a conjecture of Archer for matroids of sufficiently large rank
    corecore