4,990 research outputs found
Scalability of mass transfer in Taylor flow in capillaries
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In the present work, gas–liquid hydrodynamics and mass transfer in horizontal circular
capillaries of different diameters are investigated experimentally. The capillary diameters range from 0.5 to
3.2 mm in order to investigate the mass transfer process on both micro and milli scale. The mass transfer is
studied using the chemical absorption of CO2 into an alkaline solution. A high speed camera is used to
capture images of the flow. Subsequently, the images are analysed thought a specifically developed Matlab
code. Such a code is able to extract important hydrodynamic parameters (bubble length, liquid slug length,
void fraction, film thickness, bubble velocity etc.) that affect the mass transfer coefficient, kLa. The obtained
results both for the hydrodynamics of the flow and for the mass transfer are compared with those present in
literature, and the scalability of the mass transfer coefficient is assessed
Direct numerical simulations of mass transfer in square microchannels for liquid-liquid slug flow
Microreactors for the development of liquid-liquid processes are promising technologies since they are supposed to offer an enhancement of mass transfer compared to conventional devices due to the increase of the surface/volume ratio. But impact of the laminar flow should be negative and the effect is still to be evaluated. The present work focuses on the study of mass transfer in microchannels by means of 2D direct numerical simulations. We investigated liquid-liquid slug flow systems in square channel of 50 to 960 μm depth. The droplets velocity ranges from 0.0015 to 0.25 m/s and the ratio between the channel depth and the droplets length varies between 0.4 and 11.2. Droplet side volumetric mass transfer coefficients were identified from concentration field computations and the evolution of these coefficients as a function of the flow parameters and the channel size is discussed. This study reveals that mass transfer is strongly influenced by the flow structure inside the droplet. Moreover, it shows that the confinement of the droplets due to the channel size leads to an enhancement of mass transfer compared to cases where the droplets are not constrained by the walls
Gas-liquid hydrodynamics in Taylor Flows with complex liquids
Universitá di Pisa
Facoltá di Ingegneria
Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali
Relazione di tirocinio
in Ingegneria Chimica
Gas-liquid hydrodynamics in Taylor Flows with complex liquids
Il candidato:
Federico Alberini
Il relatore: Prof. Elisabetta Brunazzi
Controrelatore:
Prof. Ing. Roberto Mauri
Anno Accademico 2009-201
Aeration and hydrodynamics in submerged membrane bioreactors
Membrane bioreactor (MBR) is already a well-developed wastewater treatment process for both municipal and industrial applications. Nonetheless, membrane fouling remains a significant problem for its wider development. In the case of submerged membrane bioreactors (SMBRs), one of the most efficient strategies to limit fouling is the use of a gas/liquid two-phase flow to enhance the mass transfer. However, the effect of aeration still remains incompletely understood. The complexity of flows and of the nature of activated sludge makes a theoretical approach difficult. Aeration is the source of a large part of the operating costs in most industrial scale plants and its optimization is a necessity to make the process really efficient. This paper first deals with hydrodynamics in MBRs, then it reviews the parameters of aeration and their impact on filtration performance. Finally, the effects of aeration mechanisms on biological media are described
Numerical study of the coupling between reaction and mass transfer for liquid-liquid slug flow in square microchannels
While the benefits of miniaturisation on processes have been widely demonstrated, its impact on microfluidics and local mechanisms such as mass transfer is still little understood. The aim of this work is to simulate coupling between reaction and mass transfer in microchannels for liquid-liquid slug flow. First, the extrapolation to confined flow of the classical model used to calculate interfacial mass fluxes in reactive infinite media was studied. This model consists in estimating transferred fluxes between two phases as a function of the enhancement factor E. Its expression depends on the model used to represent interfacial mass transfer. In infinite media, Lewis and Whitman’s stagnant film theory is generally preferred for its simplicity and its reliability. In the case of confined slug flow, the limitation of such a model to predict interfacial fluxes is highlighted. Secondly, the case of liquid-liquid competitive consecutive reactions in microchannels is considered. This work emphasizes the unfavourable impact of the length between droplets on selectivity. This is a direct consequence of mass transport mechanisms in microchannels
Hydrodynamic and mass transfer in inertial gas–liquid flow regimes through straight and meandering millimetric square channels
Heat-exchanger reactors are an important part of process intensification technology. For plate geometries, one solution for intensifying transfer and increasing residence times is to construct two-dimensional meandering channels. Supported by this scientific context, the present work aims at characterising gas–liquid mass transfer in the same square millimetric meandering channel, as in Anxionnaz (2009), this constituted the preliminary step required for performing exothermic gas–liquid reactions. Firstly, the gas–liquid hydrodynamics were characterised for a water/air system. When compared to a straight channel of identical compactness and sectional-area (2×2 mm2), the meandering channel induced (i) a delay in the transition from Taylor to annular-slug regimes, (ii) a rise of 10–20% in bubble lengths while conserving almost identical slug lengths, (iii) higher deformations of bubble nose and rear due to centrifugal forces (bends). Secondly, an original method for verifying the relevancy of the plug flow model and accurately determining kla was used (measurements of concentrations in dissolved oxygen along the channel length). For the Taylor flow regime, kla increased coherently when increasing jg, and the meandering geometry had a small influence. On the contrary, this effect was found no more negligible for the slug-annular flow regime. Whatever the channels, the NTUl remained low, thus showing that, even if millimetric channels allowed to intensify kla, a special attention should be paid for generating sufficient residence times. At identical compactness, the meandering channel was found to be the most competitive. Finally, results on gas–liquid interfacial areas and mass transfer coefficients were confronted and discussed with respect to the predictions issued from the model developed by Van Baten and Krishna (2004)
Comparison of multiphase SPH and LBM approaches for the simulation of intermittent flows
Smoothed Particle Hydrodynamics (SPH) and Lattice Boltzmann Method (LBM) are
increasingly popular and attractive methods that propose efficient multiphase
formulations, each one with its own strengths and weaknesses. In this context,
when it comes to study a given multi-fluid problem, it is helpful to rely on a
quantitative comparison to decide which approach should be used and in which
context. In particular, the simulation of intermittent two-phase flows in pipes
such as slug flows is a complex problem involving moving and intersecting
interfaces for which both SPH and LBM could be considered. It is a problem of
interest in petroleum applications since the formation of slug flows that can
occur in submarine pipelines connecting the wells to the production facility
can cause undesired behaviors with hazardous consequences. In this work, we
compare SPH and LBM multiphase formulations where surface tension effects are
modeled respectively using the continuum surface force and the color gradient
approaches on a collection of standard test cases, and on the simulation of
intermittent flows in 2D. This paper aims to highlight the contributions and
limitations of SPH and LBM when applied to these problems. First, we compare
our implementations on static bubble problems with different density and
viscosity ratios. Then, we focus on gravity driven simulations of slug flows in
pipes for several Reynolds numbers. Finally, we conclude with simulations of
slug flows with inlet/outlet boundary conditions. According to the results
presented in this study, we confirm that the SPH approach is more robust and
versatile whereas the LBM formulation is more accurate and faster
Characteristics of liquids lugs in gas–liquid Taylor flow in microchannels
The hydrodynamics of liquid slugs in gas–liquid Taylor flow in straight and meandering microchannels have been studied using micro Particle Image Velocimetry. The results confirm a recirculation motion in the liquid slug, which is symmetrical about the center line of the channel for the straight geometry and more complex and three-dimensional in the meandering channel. An attempt has also been made to quantify and characterize this recirculation motion in these short liquid slugs (Ls/w<1.5) by evaluating the recirculation rate, velocity and time. The recirculation velocity was found to increase linearly with the two-phase superficial velocity UTP. The product of the liquid slug residence time and the recirculation rate is independent of UTP under the studied flow conditions. These results suggest that the amount of heat or mass transferred between a given liquid slug and its surroundings is independent of the total flow rate and determined principally by the characteristics of the liquid slug
A suitable parametrization to simulate slug flows with the Volume-Of-Fluid method
Diffuse–interface methods, such as the Volume-Of-Fluid method, are often used to simulate complex multiphase flows even if they require significant computation time. Moreover, it can be difficult to simulate some particular two-phase flows such as slug flows with thin liquid films. Suitable parametrization is necessary to provide accuracy and computation speed. Based on a numerical study of slug flows in capillary tubes, we show that it is not trivial to optimize the parametrization of these methods. Some simulation problems described in the literature are directly related to a poor model parametrization, such as an unsuitable discretization scheme or too large time steps. The weak influence of the mesh irregularity is also highlighted. It is shown how to capture accurately thin liquid films with reasonably low computation times
A Hydrodynamic Study of Benzyl Alcohol Oxidation in a Micro-Packed Bed Reactor
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.The various flow regimes prevalent during gold-palladium catalyzed benzyl alcohol oxidation in a micro-packed bed reactor and their influence on reaction performance are identified. The reaction is studied in a 300μm deep x 600μm wide silicon-glass micro-structured reactor packed with 65μm catalyst particles at a temperature of 120°C, pressure of 1 bar (g), using pure oxygen and neat benzyl alcohol as the feed. Significant improvement in the conversion and selectivity to the main product, benzaldehyde, is observed with increasing gas flowrate and decreasing liquid flowrate, which coincides with a change in the flow pattern from “liquid-dominated slug” (segregated regions of liquid and gas slugs) to “gas-continuous trickle” (thin film coated catalyst particles with gas flowing through the voids). The latter flow regime results in enhanced external mass transfer due to an increase in the available interfacial area and shorter diffusional distances. Results show selectivity up to 81% at a catalyst space time of 76 gcatgalc(-1).s, outperforming a conventional batch laboratory reactor
- …
