109 research outputs found

    Slowly synchronizing automata and digraphs

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. These automata are closely related to primitive digraphs with large exponent.Comment: 13 pages, 5 figure

    Primitive digraphs with large exponents and slowly synchronizing automata

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. All these automata are tightly related to primitive digraphs with large exponent.Comment: 23 pages, 11 figures, 3 tables. This is a translation (with a slightly updated bibliography) of the authors' paper published in Russian in: Zapiski Nauchnyh Seminarov POMI [Kombinatorika i Teorija Grafov. IV], Vol. 402, 9-39 (2012), see ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v402/p009.pdf Version 2: a few typos are correcte

    On the Number of Synchronizing Colorings of Digraphs

    Full text link
    We deal with kk-out-regular directed multigraphs with loops (called simply \emph{digraphs}). The edges of such a digraph can be colored by elements of some fixed kk-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with nn vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 11/kd1-1/k^d, for every d1d \ge 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 11/k1-1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k=2k=2.Comment: CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1

    Reset thresholds of automata with two cycle lengths

    Full text link
    We present several series of synchronizing automata with multiple parameters, generalizing previously known results. Let p and q be two arbitrary co-prime positive integers, q > p. We describe reset thresholds of the colorings of primitive digraphs with exactly one cycle of length p and one cycle of length q. Also, we study reset thresholds of the colorings of primitive digraphs with exactly one cycle of length q and two cycles of length p.Comment: 11 pages, 5 figures, submitted to CIAA 201

    On the interplay between Babai and Cerny's conjectures

    Full text link
    Motivated by the Babai conjecture and the Cerny conjecture, we study the reset thresholds of automata with the transition monoid equal to the full monoid of transformations of the state set. For automata with nn states in this class, we prove that the reset thresholds are upper-bounded by 2n26n+52n^2-6n+5 and can attain the value n(n1)2\tfrac{n(n-1)}{2}. In addition, we study diameters of the pair digraphs of permutation automata and construct nn-state permutation automata with diameter n24+o(n2)\tfrac{n^2}{4} + o(n^2).Comment: 21 pages version with full proof

    A linear bound on the k-rendezvous time for primitive sets of NZ matrices

    Full text link
    A set of nonnegative matrices is called primitive if there exists a product of these matrices that is entrywise positive. Motivated by recent results relating synchronizing automata and primitive sets, we study the length of the shortest product of a primitive set having a column or a row with k positive entries, called its k-rendezvous time (k-RT}), in the case of sets of matrices having no zero rows and no zero columns. We prove that the k-RT is at most linear w.r.t. the matrix size n for small k, while the problem is still open for synchronizing automata. We provide two upper bounds on the k-RT: the second is an improvement of the first one, although the latter can be written in closed form. We then report numerical results comparing our upper bounds on the k-RT with heuristic approximation methods.Comment: 27 pages, 10 figur
    corecore