31 research outputs found

    Slow and steady feature analysis: higher order temporal coherence in video

    Full text link
    How can unlabeled video augment visual learning? Existing methods perform "slow" feature analysis, encouraging the representations of temporally close frames to exhibit only small differences. While this standard approach captures the fact that high-level visual signals change slowly over time, it fails to capture *how* the visual content changes. We propose to generalize slow feature analysis to "steady" feature analysis. The key idea is to impose a prior that higher order derivatives in the learned feature space must be small. To this end, we train a convolutional neural network with a regularizer on tuples of sequential frames from unlabeled video. It encourages feature changes over time to be smooth, i.e., similar to the most recent changes. Using five diverse datasets, including unlabeled YouTube and KITTI videos, we demonstrate our method's impact on object, scene, and action recognition tasks. We further show that our features learned from unlabeled video can even surpass a standard heavily supervised pretraining approach.Comment: in Computer Vision and Pattern Recognition (CVPR) 2016, Las Vegas, NV, June 201

    How to Solve Classification and Regression Problems on High-Dimensional Data with a Supervised Extension of Slow Feature Analysis

    Get PDF
    Supervised learning from high-dimensional data, e.g., multimedia data, is a challenging task. We propose an extension of slow feature analysis (SFA) for supervised dimensionality reduction called graph-based SFA (GSFA). The algorithm extracts a label-predictive low-dimensional set of features that can be post-processed by typical supervised algorithms to generate the final label or class estimation. GSFA is trained with a so-called training graph, in which the vertices are the samples and the edges represent similarities of the corresponding labels. A new weighted SFA optimization problem is introduced, generalizing the notion of slowness from sequences of samples to such training graphs. We show that GSFA computes an optimal solution to this problem in the considered function space, and propose several types of training graphs. For classification, the most straightforward graph yields features equivalent to those of (nonlinear) Fisher discriminant analysis. Emphasis is on regression, where four different graphs were evaluated experimentally with a subproblem of face detection on photographs. The method proposed is promising particularly when linear models are insufficient, as well as when feature selection is difficult

    Improved two-stream model for human action recognition

    Get PDF
    This paper addresses the recognitions of human actions in videos. Human action recognition can be seen as the automatic labeling of a video according to the actions occurring in it. It has become one of the most challenging and attractive problems in the pattern recognition and video classification fields. The problem itself is difficult to solve by traditional video processing methods because of several challenges such as the background noise, sizes of subjects in different videos, and the speed of actions. Derived from the progress of deep learning methods, several directions are developed to recognize a human action from a video, such as the long-short-term memory (LSTM)-based model, two-stream convolutional neural network (CNN) model, and the convolutional 3D model.In this paper, we focus on the two-stream structure. The traditional two-stream CNN network solves the problem that CNNs do not have satisfactory performance on temporal features. By training a temporal stream, which uses the optical flow as the input, a CNN can have the ability to extract temporal features. However, the optical flow only contains limited temporal information because it only records the movements of pixels on the x-axis and the y-axis. Therefore, we attempt to design and implement a new two-stream model by using an LSTM-based model in its spatial stream to extract both spatial and temporal features in RGB frames. In addition, we implement a DenseNet in the temporal stream to improve the recognition accuracy. This is in-contrast to traditional approaches which typically utilize the spatial stream for extracting only spatial features. The quantitative evaluation and experiments are conducted on the UCF-101 dataset, which is a well-developed public video dataset. For the temporal stream, we choose the optical flow of UCF-101. Images in the optical flow are provided by the Graz University of Technology. The experimental result shows that the proposed method outperforms the traditional two-stream CNN method with an accuracy of at least 3%. For both spatial and temporal streams, the proposed model also achieves higher recognition accuracies. In addition, compared with the state of the art methods, the new model can still have the best recognition performance
    corecore