19 research outputs found

    Finding event correlations in federated wireless sensor networks

    Get PDF
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.Event correlation engines help us find events of interest inside raw sensor data streams and help reduce the data volume, simultaneously. This paper discusses some of the challenges faced in finding event correlations over federated wireless sensor networks (WSNs) including high data volumes, uncertain or missing data, application-specific dependencies and widely varying data ranges and sampling frequencies. Analysisover real geo-tracking data of moving objects confirms some of these challenges. Federation at the data layer above the WSNs is presented as a feasible alternative.TÜBİTAK ; IBM Shared University Research program ; European Commissio

    Top-K Queries on Uncertain Data: On Score Distribution and Typical Answers

    Get PDF
    Uncertain data arises in a number of domains, including data integration and sensor networks. Top-k queries that rank results according to some user-defined score are an important tool for exploring large uncertain data sets. As several recent papers have observed, the semantics of top-k queries on uncertain data can be ambiguous due to tradeoffs between reporting high-scoring tuples and tuples with a high probability of being in the resulting data set. In this paper, we demonstrate the need to present the score distribution of top-k vectors to allow the user to choose between results along this score-probability dimensions. One option would be to display the complete distribution of all potential top-k tuple vectors, but this set is too large to compute. Instead, we propose to provide a number of typical vectors that effectively sample this distribution. We propose efficient algorithms to compute these vectors. We also extend the semantics and algorithms to the scenario of score ties, which is not dealt with in the previous work in the area. Our work includes a systematic empirical study on both real dataset and synthetic datasets.National Natural Science Foundation (Grant number IIS-0086057)National Natural Science Foundation (Grant number IIS- 0325838)National Natural Science Foundation (Grant number IIS-0448124

    Local Differentially Private Heavy Hitter Detection in Data Streams with Bounded Memory

    Full text link
    Top-kk frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-kk items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy. In this paper, we present a novel framework HG-LDP to achieve accurate Top-kk item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior ``accuracy-privacy-memory efficiency'' tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior ``accuracy-privacy-memory efficiency'' tradeoff, saving 2300×2300\times memory over baseline methods when the item domain size is 41,27041,270. Our code is open-sourced via the link

    Sliding windows over uncertain data streams

    Get PDF
    Uncertain data streams can have tuples with both value and existential uncertainty. A tuple has value uncertainty when it can assume multiple possible values. A tuple is existentially uncertain when the sum of the probabilities of its possible values is <<<1. A situation where existential uncertainty can arise is when applying relational operators to streams with value uncertainty. Several prior works have focused on querying and mining data streams with both value and existential uncertainty. However, none of them have studied, in depth, the implications of existential uncertainty on sliding window processing, even though it naturally arises when processing uncertain data. In this work, we study the challenges arising from existential uncertainty, more specifically the management of count-based sliding windows, which are a basic building block of stream processing applications. We extend the semantics of sliding window to define the novel concept of uncertain sliding windows and provide both exact and approximate algorithms for managing windows under existential uncertainty. We also show how current state-of-the-art techniques for answering similarity join queries can be easily adapted to be used with uncertain sliding windows. We evaluate our proposed techniques under a variety of configurations using real data. The results show that the algorithms used to maintain uncertain sliding windows can efficiently operate while providing a high-quality approximation in query answering. In addition, we show that sort-based similarity join algorithms can perform better than index-based techniques (on 17 real datasets) when the number of possible values per tuple is low, as in many real-world applications. © 2014, Springer-Verlag London

    Sliding-window top-k queries on uncertain streams

    No full text
    Query processing on uncertain data streams has attracted a lot of attentions lately, due to the imprecise nature in the data generated from a variety of streaming applications, such as readings from a sensor network. However, all of the existing works on uncertain data streams study unbounded streams. This paper takes the first step towards the important and challenging problem of answering sliding-window queries on uncertain data streams, with a focus on arguably one of the most important types of queries—top-k queries. The challenge of answering sliding-window top-k queries on uncertain data streams stems from the strict space and time requirements of processing both arriving and expiring tuples in high-speed streams, combined with the difficulty of coping with the exponential blowup in the number of possible worlds induced by the uncertain data model. In this paper, we design a unified framework for processing sliding-window top-k queries on uncertain streams. We show that all the existing top-k definitions in the literature can be plugged into our framework, resulting in several succinct synopses that use space much smaller than the window size, while are also highly efficient in terms of processing time. In addition to the theoretical space and time bounds that we prove for these synopses, we also present a thorough experimental report to verify their practical efficiency on both synthetic and real data. 1
    corecore