710 research outputs found

    Recent Progress in Some Aircraft Technologies

    Get PDF
    The book describes the recent progress in some engine technologies and active flow control and morphing technologies and in topics related to aeroacoustics and aircraft controllers. Both the researchers and students should find the material useful in their work

    High Fidelity Model of Ball Screws to Support Model-based Health Monitoring

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Data Driven Approach to Non-stationary EMA Fault Detection and Investigation Into Remaining Useful Life

    Get PDF
    Growing interest in using Electromechanical Actuators (EMAs) to replace current hydraulic actuation methods on aircraft control surfaces has driven significant research in the area of prognostics and health management. Non- stationary speeds and loads in the course of controlling an aircraft surface make fault identification in EMAs difficult. This work presents a time- frequency analysis of EMA thrust bearing vibration signals using wavelet transforms. A relatively small EMA system is designed and built to allow for simple, quick, and repeatable component replacement. A simulated signal is developed to test four potential faults in the system. Classification is performed using an artificial neural network (ANN), which yields over 99% accuracy. Indentation faults from moderate and heavy loads are seeded in thrust bearings, which are then tested to generate data. The ANN achieves 95% classification accuracy in a two class scenario using healthy and moderately indented bearings. A three class test is executed using thrust bearings at each level of damage to perform preliminary remaining useful life (RUL) testing, where an ANN is able to identify the fault severity with an accuracy of 88%

    Backstepping-based Super-Twisting Sliding Mode Control for a Quadrotor Manipulator with Tiltable Rotors

    Get PDF
    Designing a robust controller is very important in the control of outdoor unmanned aerial vehicles. This paper presents the design procedures and implementation of super-twisting sliding mode controller, which is a robust nonlinear controller. The robust controller is applied to an over-actuated quadrotor manipulator with four tiltable rotors. A serial manipulator with two links is mounted on the bottom of the quadrotor. The quadrotor possesses the property of decoupling its position and orientation. The main contribute of this paper is that a super-twisting sliding mode controller in vector form is designed and applied to the control of an over-actuated quadrotor manipulator. Another contribution of this paper is that the stability of the closed-loop system is proved by utilizing the Lyapunov stability theory. It is confirmed that the performance of the super-twisting sliding mode controller is superior to that of the conventional backstepping controller in terms of convergence rate and accuracy by simulations

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF

    Safe local aerial manipulation for the installation of devices on power lines: Aerial-core first year results and designs

    Get PDF
    Article number 6220The power grid is an essential infrastructure in any country, comprising thousands of kilometers of power lines that require periodic inspection and maintenance, carried out nowadays by human operators in risky conditions. To increase safety and reduce time and cost with respect to conventional solutions involving manned helicopters and heavy vehicles, the AERIAL-CORE project proposes the development of aerial robots capable of performing aerial manipulation operations to assist human operators in power lines inspection and maintenance, allowing the installation of devices, such as bird flight diverters or electrical spacers, and the fast delivery and retrieval of tools. This manuscript describes the goals and functionalities to be developed for safe local aerial manipulation, presenting the preliminary designs and experimental results obtained in the first year of the project.European Union (UE). H2020 871479Ministerio de Ciencia, Innovación y Universidades de España FPI 201

    Design and Control Modeling of Novel Electro-magnets Driven Spherical Motion Generators

    Get PDF

    Fluid Power and Motion Control:FPMC 2012

    Get PDF
    corecore