3,985 research outputs found

    Slice-level diffusion encoding for motion and distortion correction

    Get PDF
    Advances in microstructural modelling are leading to growing requirements on diffusion MRI acquisitions, namely sensitivity to smaller structures and better resolution of the geometric orientations. The resulting acquisitions contain highly attenuated images that present particular challenges when there is motion and geometric distortion. This study proposes to address these challenges by breaking with the conventional one-volume-one-encoding paradigm employed in conventional diffusion imaging using single-shot Echo Planar Imaging. By enabling free choice of the diffusion encoding on the slice level, a higher temporal sampling of slices with low b-value can be achieved. These allow more robust motion correction, and in combination with a second reversed phase-encoded echo, also dynamic distortion correction. These proposed advances are validated on phantom and adult experiments and employed in a study of eight foetal subjects. Equivalence in obtained diffusion quantities with the conventional method is demonstrated as well as benefits in distortion and motion correction. The resulting capability can be combined with any acquisition parameters including multiband imaging and allows application to diffusion MRI studies in general

    Generating Diffusion MRI scalar maps from T1 weighted images using generative adversarial networks

    Full text link
    Diffusion magnetic resonance imaging (diffusion MRI) is a non-invasive microstructure assessment technique. Scalar measures, such as FA (fractional anisotropy) and MD (mean diffusivity), quantifying micro-structural tissue properties can be obtained using diffusion models and data processing pipelines. However, it is costly and time consuming to collect high quality diffusion data. Here, we therefore demonstrate how Generative Adversarial Networks (GANs) can be used to generate synthetic diffusion scalar measures from structural T1-weighted images in a single optimized step. Specifically, we train the popular CycleGAN model to learn to map a T1 image to FA or MD, and vice versa. As an application, we show that synthetic FA images can be used as a target for non-linear registration, to correct for geometric distortions common in diffusion MRI

    Diffusion Imaging in the Rat Cervical Spinal Cord

    Get PDF
    Magnetic resonance imaging (MRI) is the state of the art approach for assessing the status of the spinal cord noninvasively, and can be used as a diagnostic and prognostic tool in cases of disease or injury. Diffusion weighted imaging (DWI), is sensitive to the thermal motion of water molecules and allows for inferences of tissue microstructure. This report describes a protocol to acquire and analyze DWI of the rat cervical spinal cord on a small-bore animal system. It demonstrates an imaging setup for the live anesthetized animal and recommends a DWI acquisition protocol for high-quality imaging, which includes stabilization of the cord and control of respiratory motion. Measurements with diffusion weighting along different directions and magnitudes (b-values) are used. Finally, several mathematical models of the resulting signal are used to derive maps of the diffusion processes within the spinal cord tissue that provide insight into the normal cord and can be used to monitor injury or disease processes noninvasively. The video component of this article can be found at http://www.jove.com/video/52390/ Introduction Magneti

    Impacts of Simultaneous Multislice Acquisition on Sensitivity and Specificity in fMRI

    Get PDF
    Simultaneous multislice (SMS) imaging can be used to decrease the time between acquisition of fMRI volumes, which can increase sensitivity by facilitating the removal of higher-frequency artifacts and boosting effective sample size. The technique requires an additional processing step in which the slices are separated, or unaliased, to recover the whole brain volume. However, this may result in signal “leakage” between aliased locations, i.e., slice “leakage,” and lead to spurious activation (decreased specificity). SMS can also lead to noise amplification, which can reduce the benefits of decreased repetition time. In this study, we evaluate the original slice-GRAPPA (no leak block) reconstruction algorithmand acceleration factor (AF = 8) used in the fMRI data in the young adult Human Connectome Project (HCP). We also evaluate split slice-GRAPPA (leak block), which can reduce slice leakage. We use simulations to disentangle higher test statistics into true positives (sensitivity) and false positives (decreased specificity). Slice leakage was greatly decreased by split slice-GRAPPA. Noise amplification was decreased by using moderate acceleration factors (AF = 4). We examined slice leakage in unprocessed fMRI motor task data from the HCP. When data were smoothed, we found evidence of slice leakage in some, but not all, subjects. We also found evidence of SMS noise amplification in unprocessed task and processed resting-state HCP data

    High-resolution diffusion-weighted brain MRI under motion

    Get PDF
    Magnetic resonance imaging is one of the fastest developing medical imaging techniques. It provides excellent soft tissue contrast and has been a leading tool for neuroradiology and neuroscience research over the last decades. One of the possible MR imaging contrasts is the ability to visualize diffusion processes. The method, referred to as diffusion-weighted imaging, is one of the most common clinical contrasts but is prone to artifacts and is challenging to acquire at high resolutions. This thesis aimed to improve the resolution of diffusion weighted imaging, both in a clinical and in a research context. While diffusion-weighted imaging traditionally has been considered a 2D technique the manuscripts and methods presented here explore 3D diffusion acquisitions with isotropic resolution. Acquiring multiple small 3D volumes, or slabs, which are combined into one full volume has been the method of choice in this work. The first paper presented explores a parallel imaging driven multi-echo EPI readout to enable high resolution with reduced geometric distortions. The work performed on diffusion phase correction lead to an understanding that was used for the subsequent multi-slab papers. The second and third papers introduce the diffusion-weighted 3D multi-slab echo-planar imaging technique and explore its advantages and performance. As the method requires a slightly increased acquisition time the need for prospective motion correction became apparent. The forth paper suggests a new motion navigator using the subcutaneous fat surrounding the skull for rigid body head motion estimation, dubbed FatNav. The spatially sparse representation of the fat signal allowed for high parallel imaging acceleration factors, short acquisition times, and reduced geometric distortions of the navigator. The fifth manuscript presents a combination of the high-resolution 3D multi-slab technique and a modified FatNav module. Unlike our first FatNav implementation, using a single sagittal slab, this modified navigator acquired orthogonal projections of the head using the fat signal alone. The combined use of both presented methods provides a promising start for a fully motion corrected high-resolution diffusion acquisition in a clinical setting

    Sampling strategies and integrated reconstruction for reducing distortion and boundary slice aliasing in high-resolution 3D diffusion MRI

    Get PDF
    Purpose: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. Methods: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz-oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. Results: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. Conclusion: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI

    Maxwell-compensated design of asymmetric gradient waveforms for tensor-valued diffusion encoding

    Full text link
    Purpose: Asymmetric gradient waveforms are attractive for diffusion encoding due to their superior efficiency, however, the asymmetry may cause a residual gradient moment at the end of the encoding. Depending on the experiment setup, this residual moment may cause significant signal bias and image artifacts. The purpose of this study was to develop an asymmetric gradient waveform design for tensor-valued diffusion encoding that is not affected by concomitant gradient. Methods: The Maxwell index was proposed as a scalar invariant that captures the effect of concomitant gradients and was constrained in the numerical optimization to 100 (mT/m)2^2ms to yield Maxwell-compensated waveforms. The efficacy of this design was tested in an oil phantom, and in a healthy human brain. For reference, waveforms from literature were included in the analysis. Simulations were performed to investigate if the design was valid for a wide range of experiments and if it could predict the signal bias. Results: Maxwell-compensated waveforms showed no signal bias in oil or in the brain. By contrast, several waveforms from literature showed gross signal bias. In the brain, the bias was large enough to markedly affect both signal and parameter maps, and the bias could be accurately predicted by theory. Conclusion: Constraining the Maxwell index in the optimization of asymmetric gradient waveforms yields efficient tensor-valued encoding with concomitant gradients that have a negligible effect on the signal. This waveform design is especially relevant in combination with strong gradients, long encoding times, thick slices, simultaneous multi-slice acquisition and large/oblique FOVs
    corecore