3 research outputs found

    Ambiente de suporte ao projeto de sistemas embarcados

    Get PDF
    Orientador: Roberto André HexselInclui apendiceDissertaçao (mestrado) - Universidade Federal do Paraná, Setor de Ciencias Exatas, Programa de Pós-Graduaçao em Informática. Defesa: Curitiba, 2006Inclui bibliografi

    Energy-Aware Development and Labeling for Mobile Applications

    Get PDF
    Today, mobile devices such as smart phones and tablets have become ubiquitous and are used everywhere. Millions of software applications can be purchased and installed on these devices, customizing them to personal interests and needs. However, the frequent use of mobile devices has let a new problem become omnipresent: their limited operation time, due to their limited energy capacities. Although energy consumption can be considered as being a hardware problem, the amount of energy required by today’s mobile devices highly depends on their current workloads, being highly influenced by the software running on them. Thus, although only hardware modules are consuming energy, operating systems, middleware services, and mobile applications highly influence the energy consumption of mobile devices, depending on how efficient they use and control hardware modules. Nevertheless, most of today’s mobile applications totally ignore their influence on the devices’ energy consumption, leading to energy wastes, shorter operation times, and thus, frustrated application users. A major reason for this energy-unawareness is the lack for appropriate tooling for the development of energy-aware mobile applications. As many mobile applications are today behaving energy-unaware and various mobile applications providing similar services exist, mobile application users aim to optimize their devices by installing applications being known as energy-saving or energy-aware; meaning that they consume less energy while providing the same services as their competitors. However, scarce information on the applications’ energy usage is available and, thus, users are forced to install and try many applications manually, before finding the applications fulfilling their personal functional, non-functional, and energy requirements. This thesis addresses the lack of tooling for the development of energy-aware mobile applications and the lack of comparability of mobile applications in terms of energy-awareness with the following two contributions: First, it proposes JouleUnit, an energy profiling and testing framework using unit-tests for the execution of application workloads while profiling their energy consumption in parallel. By extending a well-known testing concept and providing tooling integrated into the development environment Eclipse, JouleUnit requires a low learning curve for the integration into existing development and testing processes. Second, for the comparability of mobile applications in terms of energy efficiency, this thesis proposes an energy benchmarking and labeling service. Mobile applications belonging to the same usage domain are energy-profiled while executing a usage-domain specific benchmark in parallel. Thus, their energy consumption for specific use cases can be evaluated and compared afterwards. To abstract and summarize the profiling results, energy labels are derived that summarize the applications’ energy consumption over all evaluated use cases as a simple energy grade, ranging from A to G. Besides, users can decide how to weigh specific use cases for the computation of energy grades, as it is likely that different users use the same applications differently. The energy labeling service has been implemented for Android applications and evaluated for three different usage domains (being web browsers, email clients, and live wallpapers), showing that different mobile applications indeed differ in their energy consumption for the same services and, thus, their comparison is both possible and sensible. To the best of my knowledge, this is the first approach providing mobile application users comparable energy consumption information on mobile applications without installing and testing them on their own mobile devices

    How to Be a God

    Get PDF
    When it comes to questions concerning the nature of Reality, Philosophers and Theologians have the answers. Philosophers have the answers that can’t be proven right. Theologians have the answers that can’t be proven wrong. Today’s designers of Massively-Multiplayer Online Role-Playing Games create realities for a living. They can’t spend centuries mulling over the issues: they have to face them head-on. Their practical experiences can indicate which theoretical proposals actually work in practice. That’s today’s designers. Tomorrow’s will have a whole new set of questions to answer. The designers of virtual worlds are the literal gods of those realities. Suppose Artificial Intelligence comes through and allows us to create non-player characters as smart as us. What are our responsibilities as gods? How should we, as gods, conduct ourselves? How should we be gods
    corecore