651 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    USL-Net: Uncertainty Self-Learning Network for Unsupervised Skin Lesion Segmentation

    Full text link
    Unsupervised skin lesion segmentation offers several benefits, including conserving expert human resources, reducing discrepancies due to subjective human labeling, and adapting to novel environments. However, segmenting dermoscopic images without manual labeling guidance presents significant challenges due to dermoscopic image artifacts such as hair noise, blister noise, and subtle edge differences. To address these challenges, we introduce an innovative Uncertainty Self-Learning Network (USL-Net) designed for skin lesion segmentation. The USL-Net can effectively segment a range of lesions, eliminating the need for manual labeling guidance. Initially, features are extracted using contrastive learning, followed by the generation of Class Activation Maps (CAMs) as saliency maps using these features. The different CAM locations correspond to the importance of the lesion region based on their saliency. High-saliency regions in the map serve as pseudo-labels for lesion regions while low-saliency regions represent the background. However, intermediate regions can be hard to classify, often due to their proximity to lesion edges or interference from hair or blisters. Rather than risk potential pseudo-labeling errors or learning confusion by forcefully classifying these regions, we consider them as uncertainty regions, exempting them from pseudo-labeling and allowing the network to self-learn. Further, we employ connectivity detection and centrality detection to refine foreground pseudo-labels and reduce noise-induced errors. The application of cycle refining enhances performance further. Our method underwent thorough experimental validation on the ISIC-2017, ISIC-2018, and PH2 datasets, demonstrating that its performance is on par with weakly supervised and supervised methods, and exceeds that of other existing unsupervised methods.Comment: 14 pages, 9 figures, 71 reference

    Deep Semantic Segmentation of Natural and Medical Images: A Review

    Full text link
    The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.Comment: 45 pages, 16 figures. Accepted for publication in Springer Artificial Intelligence Revie

    Self-supervised Semantic Segmentation: Consistency over Transformation

    Full text link
    Accurate medical image segmentation is of utmost importance for enabling automated clinical decision procedures. However, prevailing supervised deep learning approaches for medical image segmentation encounter significant challenges due to their heavy dependence on extensive labeled training data. To tackle this issue, we propose a novel self-supervised algorithm, \textbf{S3^3-Net}, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules. This architectural enhancement makes it possible to comprehensively capture contextual information while preserving local intricacies, thereby enabling precise semantic segmentation. Furthermore, considering that lesions in medical images often exhibit deformations, we leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition. Additionally, our self-supervised strategy emphasizes the acquisition of invariance to affine transformations, which is commonly encountered in medical scenarios. This emphasis on robustness with respect to geometric distortions significantly enhances the model's ability to accurately model and handle such distortions. To enforce spatial consistency and promote the grouping of spatially connected image pixels with similar feature representations, we introduce a spatial consistency loss term. This aids the network in effectively capturing the relationships among neighboring pixels and enhancing the overall segmentation quality. The S3^3-Net approach iteratively learns pixel-level feature representations for image content clustering in an end-to-end manner. Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches. https://github.com/mindflow-institue/SSCTComment: Accepted in ICCV 2023 workshop CVAM
    • …
    corecore