1,167 research outputs found

    Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks

    Full text link
    Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017. The dataset for this competition is consisted of 12.6k radiological images of left hand labeled by the bone age and sex of patients. Our approach utilizes several deep learning architectures: U-Net, ResNet-50, and custom VGG-style neural networks trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and inference. This approach allows us to measure importance of specific hand bones for the automated bone age analysis. We further evaluate performance of the method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.Comment: 14 pages, 9 figure

    Feature Detection in Medical Images Using Deep Learning

    Get PDF
    This project explores the use of deep learning to predict age based on pediatric hand X-Rays. Data from the Radiological Society of North America’s pediatric bone age challenge were used to train and evaluate a convolutional neural network. The project used InceptionV3, a CNN developed by Google, that was pre-trained on ImageNet, a popular online image dataset. Our fine-tuned version of InceptionV3 yielded an average error of less than 10 months between predicted and actual age. This project shows the effectiveness of deep learning in analyzing medical images and the potential for even greater improvements in the future. In addition to the technological and potential clinical benefits of these methods, this project will serve as a useful pedagogical tool for introducing the challenges and applications of deep learning to the Bryant community

    Semi-Supervised Self-Taught Deep Learning for Finger Bones Segmentation

    Full text link
    Segmentation stands at the forefront of many high-level vision tasks. In this study, we focus on segmenting finger bones within a newly introduced semi-supervised self-taught deep learning framework which consists of a student network and a stand-alone teacher module. The whole system is boosted in a life-long learning manner wherein each step the teacher module provides a refinement for the student network to learn with newly unlabeled data. Experimental results demonstrate the superiority of the proposed method over conventional supervised deep learning methods.Comment: IEEE BHI 2019 accepte

    Fully Automated Bone Age Assessment On Large-Scale Hand X-Ray Dataset

    Get PDF
    Bone age assessment (BAA) is an essential topic in the clinical practice of evaluating the biological maturity of children. Because the manual method is time-consuming and prone to observer variability, it is attractive to develop computer-aided and automated methods for BAA. In this paper, we present a fully automatic BAA method. To eliminate noise in a raw X-ray image, we start with using U-Net to precisely segment hand mask image from a raw X-ray image. Even though U-Net can perform the segmentation with high precision, it needs a bigger annotated dataset. To alleviate the annotation burden, we propose to use deep active learning (AL) to select unlabeled data samples with sufficient information intentionally. These samples are given to Oracle for annotation. After that, they are then used for subsequential training. In the beginning, only 300 data are manually annotated and then the improved U-Net within the AL framework can robustly segment all the 12611 images in RSNA dataset. The AL segmentation model achieved a Dice score at 0.95 in the annotated testing set. To optimize the learning process, we employ six off-the-shell deep Convolutional Neural Networks (CNNs) with pretrained weights on ImageNet. We use them to extract features of preprocessed hand images with a transfer learning technique. In the end, a variety of ensemble regression algorithms are applied to perform BAA. Besides, we choose a specific CNN to extract features and explain why we select that CNN. Experimental results show that the proposed approach achieved discrepancy between manual and predicted bone age of about 6.96 and 7.35 months for male and female cohorts, respectively, on the RSNA dataset. These accuracies are comparable to state-of-the-art performance

    Convolutional Neural Network Model for Sex Determination Using Femur Bones

    Get PDF
    Forensic anthropology is the critical discipline that applies physical anthropology in forensic education. One valuable application is the identification of the biological profile. However, in the aftermath of significant disasters, the identification of human skeletons becomes challenging due to their incompleteness and difficulty determining sex. Researchers have explored alternative indicators to address this issue, including using the femur bone as a reliable sex identifier. The development of artificial intelligence has created a new field called deep learning that has excelled in various applications, including sex determination using the femur bone. In this study, we employ the Convolutional Neural Network (CNN) method to identify the sex of human skeleton shards. A CNN model was trained on 91 CT-scan results of femur bones collected from Universiti Teknologi Malaysia, comprising 50 female and 41 male patients. The data pre-processing involves cropping, and the dataset is divided into training and validation subsets with varying percentages (60:4, 70:30, and 80:20). The constructed CNN architecture exhibits exceptional accuracy, achieving 100% accuracy in both training and validation data. Moreover, the precision, recall, and F1 score attained a perfect score of 1, validating the model's precise predictions. The results of this research demonstrate excellent accuracy, confirming the reliability of the developed model for sex determination. These findings demonstrate that using deep learning for sex determination is a novel and promising approach. The high accuracy of the CNN model provides a valuable tool for sex determination in challenging scenarios. This could have important implications for forensic investigations and help identify victims of disasters and other crimes
    • …
    corecore