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Research Article
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Bone age assessment (BAA) is an essential topic in the clinical practice of evaluating the biological maturity of children. Because the
manual method is time-consuming and prone to observer variability, it is attractive to develop computer-aided and automated
methods for BAA. In this paper, we present a fully automatic BAA method. To eliminate noise in a raw X-ray image, we start
with using U-Net to precisely segment hand mask image from a raw X-ray image. Even though U-Net can perform the
segmentation with high precision, it needs a bigger annotated dataset. To alleviate the annotation burden, we propose to use
deep active learning (AL) to select unlabeled data samples with sufficient information intentionally. These samples are given to
Oracle for annotation. After that, they are then used for subsequential training. In the beginning, only 300 data are manually
annotated and then the improved U-Net within the AL framework can robustly segment all the 12611 images in RSNA dataset.
The AL segmentation model achieved a Dice score at 0.95 in the annotated testing set. To optimize the learning process, we
employ six off-the-shell deep Convolutional Neural Networks (CNNs) with pretrained weights on ImageNet. We use them to
extract features of preprocessed hand images with a transfer learning technique. In the end, a variety of ensemble regression
algorithms are applied to perform BAA. Besides, we choose a specific CNN to extract features and explain why we select that
CNN. Experimental results show that the proposed approach achieved discrepancy between manual and predicted bone age of
about 6.96 and 7.35 months for male and female cohorts, respectively, on the RSNA dataset. These accuracies are comparable to
state-of-the-art performance.

1. Introduction

Bone age assessment (BAA) may provide important clinical
information for skeletal maturation estimation, especially
for the diagnosis of endocrinological problems and growth
disorders [1]. The discrepancy between bone age and chro-
nological age indicates the abnormalities in skeletal develop-
ment. In clinical practice, radiologists perform BAA through
examining a left-hand-wrist X-ray image. Historically, two
BAA methods, Greulich and Pyle (GP) method [2] and Tan-
ner Whitehouse method (TW2) [3], are widely used in clini-
cal practice. The GP method compares the patient’s X-ray
image with a representative age atlas and determines the

bone age. In the TW2 method, twenty regions of interest
(ROIs) located in the main hand bones are taken into consid-
eration for the bone age evaluation. All these procedures are
tedious, time-consuming, and prone to observer variability.

As we know, deep learning has been applied to computer
vision task and achieved drastic performance improvement.
In this paper, we propose a method which learns real latent
features of hand X-ray images and facilitates the feature cap-
ture to perform BAA. At the beginning of the method, we
train the U-Net neural networks to precisely segment hand
image from radiographs and eliminate insignificant infor-
mation in raw X-ray images with an active learning tech-
nique. Then, we use pretrained deep Convolutional Neural
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Networks (CNNs) to extract high-level features with a
transfer learning technique. After that, ensemble learning
is employed to perform BAA with different base regressors.
Finally, we evaluate the overall performance of our approach
across different models. The proposed method pipeline is
shown in Figure 1. The experimental results demonstrate
that the proposed method is more robust and achieves a
state-of-the-art performance.

2. Review of BAA

The conventional BAA approaches could be categorized into
GP and TW methods. Some traditional machine learning
methods have been applied to a BAA approach, such as sup-
port vector machine (SVM) [4], SVM with cross-correlation
[5], and support vector regression [6]. Besides, the most prev-
alent and widely used software for automatic BAA in Europe
is BoneXpert [7]. This system works based on a shape-driven
active appearance and TW RUS-based approach. However, it
is sensitive to image quality and does not utilize the whole set
of hand bones, although all of them are important for skeletal
maturity assessment. In summary, all of the aforementioned
works demonstrate a lack of accuracy.

Recently, motivated by the success of deep Convolutional
Neural Networks (DCNN) in image classification, studies in
medical imaging have been exploring such methods. Rucci
et al. uses an attention focuser and a bone classifier in a neu-
ral network to extract features of carpal bones and performs
BAA [8]. While the method presents the neural network as
a useful technique for classification in the TW2 method, the
approach does not achieve satisfying results with an error
rate of 1.4 years. In 2012, Mansourvar et al. developed a fully
automated BAA system that uses compression techniques
base on histogram methods [9]. This approach works on an
image repository to perform similarity measures and uses a
content-based image retrieval method for image processing.
Because the proposed method does not perform precise hand
segmentation, it is not reliable for images with poor quality
or abnormal bone structure. Deep learning-based methods
allow avoiding feature engineering by automatically learn-
ing the hierarchy of discriminative features directly from a
set training data. DCNN has been successfully applied in
the bone age estimation [10–12]. All of above methods
are end-to-end learning architecture to estimate bone age
using DCNN.

Despite some methods yield very accurate results, most
existing methods suffer from two main limitations:

(1) Most of the above methods operate on coarse seg-
mentation of hand images, which might mislead
BAA toward focusing on irrelevant ROIs

(2) Most of the proposed approaches use hand-crafted
features, such as HOG feature, LBP feature, and Harr
feature, thus constraining regressor or classifier to use
low-level X-ray image features rather than the higher
and deeper latent features. This semantic gap always
limits the generalization capabilities of BAA systems

3. Active Learning for Hand
Image Segmentation

To perform BAA, we first extract a precise region of inter-
est (ROI), a hand mask, from the raw X-ray image. We
then remove all irrelevant objects which may mislead
model training. It is necessary to establish a nonlinear map-
ping from original X-ray images to hand ROIs for eliminat-
ing noise in raw X-ray images. Recently, deep learning
solutions have been successfully used in a multitude of
medical image semantic segmentation tasks [13]. Even
though significant performance improvement has been
achieved, a bigger annotated dataset is essential for model
training. However, in practice, the task of annotating med-
ical images is tedious, time-consuming, and may need
expert knowledge. To alleviate the annotation burden, we
employ a technique called active learning (AL) to actively
select unlabeled hand radiograph during the training proce-
dure and ask for human annotation. The proposed method
achieves high performance on hand segmentation with as
fewer annotations as possible.

3.1. Active Learning with Query by Committee. In this paper,
we propose a new framework for hand radiograph segmenta-
tion using the AL strategy with a limited amount of labeled
training data. The flowchart of the proposed framework is
shown in Figure 2. Let labeled dataset, L = ffx1, y1g,⋯,fxn,
yngg, be a collection of hand radiographs, fxig, and corre-
sponding labeled hand binary masks fyig (background and
hand mask are represented by 0 and 1, respectively). We
define U = fxn+1,⋯,xn+mg, be a collection of unlabeled data.
The selection of samples inU is determined by the AL frame-
work. During the training iteration, the most informative
samples which are beneficial for model training are selected
preferentially. Our task is to train a nonlinear mapping func-
tion, a deep neural network, with L and make use of U to
refine the parameters in the network.

The main hypothesis in AL framework is that active
learning can judge which data contain the most abundant
information for Oracle annotation. The process of AL is like
a pupil learns a curriculum. Along the learning process, the
pupil spontaneously determines which sample is hard and
then asks teachers which sample is well studied. In this set-
ting, AL does not require human to annotate all training data,
but only the most uncertain data in the training process.

In practice, query by committee (QBC) is a common
strategy in the field of AL [14]. The fundamental prerequi-
site behind QBC is to minimize the version space [15].
QBC contains a committee C = fθ1, θ2,⋯, θkg of network
models, all of which are trained with the same labeled
dataset L. In BAA problem, we demonstrate θi as a model
which learns nonlinear mapping from hand radiograph to
hand binary mask. We define each model as a deep neural
network. In QBC framework, every member cooperates to
determine which unlabeled data need to be annotated by
Oracle after each training epoch. Our goal is to train them
and develop sound cooperative relations. After each training
epoch, all members in C jointly determine the uncertainty of
each unlabeled datum.
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Now, we define an uncertainty measure for the level of
disagreement of a committee. Since we train a set of mem-
bers in the committee, each member can extract features of
the unlabeled data. We use a different random seed to gen-
erate the initial model parameters for a different member so
that in each training iteration, the features extracted by
each member are different. In practice, we flatten the fea-
ture to a vector, and the feature similarity of two members
are as follows:

cosinesim = vector1 ∗ vector2
vector1j j vector2j j , ð1Þ

where the vectori stands for features extracted by θi in com-
mittee C.

The unlabeled datum with the lowest feature similarity
indicates the datum has the most significant information
which is supposed to be helpful for the model training.
Therefore, the ground truth of such unlabeled datum should
be annotated by Oracle and then added into the labeled data-
set for the following training epochs.

3.2. U-Net for Hand Segmentation. As demonstrated in [13],
U-Net is robust in medical image segmentation and needs a
smaller number of labeled data. U-Net uses convolution layer
to automatically extracted features and uses skip connection
to remove the cropping operation and maintains the low-
level image outline information in high-level feature maps
[16]. We deepen the network and widen the receptive field
to refine the structure of U-Net by increasing the number
of filters in each convolutional and upsampling layer. The
refined U-Net structure is shown in Figure 3.

In Figure 3, each blue block corresponds to a multi-
channel feature map. The arrows with different colors sug-
gest different data flow operations. The purple block
(vector) represents the deep feature vector of the input
image inferred by each member. The vector is used in
QBC to calculate the similarity between each member in
C and to determine whether the input image needs to be
annotated or not.

In addition, we optimize the loss function in the process
of training a member, i.e., a U-Net. In the field of image seg-
mentation, a pixel-wise loss function is usually used to penal-
ize the distance between the ground truth and the predicted
probability map. We define the pixel-wise loss function with
a cross entropy formulation:

Lpixel‐wise =〠
i

− yi log ŷið Þ − 1 − yið Þ log 1 − ŷið Þ, ð2Þ

where yi and ŷi stand for the ground truth and the pre-
dicted probability map of pixel i, respectively. This loss
examines each pixel individually, and this helps in speed-
ing up the training for neural networks in comparison to
the quadratic loss.

3.3. Algorithm Description. In this section, we summarize the
algorithm for hand image segmentation.

4. Bone Age Assessment Model

Even though CNNs are more commonly used in image clas-
sification tasks, BAA is a regression task in fact. Indeed, the
essential of CNN is to extract different level features with
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various convolutional filters. The extracted features are
always fed into a softmax classifier followed by several Fully
Connected (FC) layers to classify input images. Inspired by
the classification task model, we aim to use deep CNNs and
traditional regression algorithms to perform BAA.

4.1. Hand Bone Features Extracting. The key point in BAA is
to extract distinct features from preprocessed hand images.
Usually, a large training dataset is necessary to fine-tune a
deep CNN. However, RSNA dataset only provides 12611
images, which is a pittance amount of data compared with
ImageNet dataset, which contains nearly 15 million images.
Consequently, training a high-level feature extractor is diffi-
cult on RSNA BAA dataset.

In this situation, we use a transfer learning technique
and a variety of models with pretrained weights to acquire

features. Transfer learning has been applied to datasets which
are similar to large-scale ImageNet dataset such as [17].
Although medical data are different from natural image,
transfer learning can be a possible solution for medical data
feature extraction. It uses weights trained on images in other
domains and infers medical image high-level features
through the network pipeline. Recent researches in [18] dem-
onstrate that it is possible to transfer domain-specific knowl-
edge from natural images to medical images and achieve
brilliant performance.

Since CNN has been proposed, researchers have designed
various deep CNN models. Several state-of-the-art examples
are VGG-16 [19], VGG-19 [19], ResNet-50 [20], Inception-
V3 [21], Inception-ResNet-V2 [22], and Xception [23]. In
this paper, we use the same preprocessing methods in the
above networks to preprocess segmented hand bone images.
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Input:
L = ffx1, y1g,⋯,fxn, yngg: initial labeled training data, composed of n samples.
U = fxn+1,⋯,xn+mg: initial unlabeled training data, composed of m samples.
Output:
C = fθ1, θ2,⋯, θkg: trained committee of U-Nets.
Repeat:
1. Train C = fθ1, θ2,⋯, θkg with the loss function in EQ2 on L
2. Calculating unlabeled data’s uncertainty between different U-Nets and select the data with the largest uncertainty
3. Annotate the selected data by Oracle and add them into L
Until: hand segmentation is satisfied on U .

Algorithm 1. Hand image segmentation.
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We initialize the six above networks with pretrained weights
on ImageNet then use them to extract features of hand
radiographs.

By using transfer learning, the high-level feature maps or
high-level 3-dimensional tensor of hand radiographs can be
acquired from the last CNN layer of the CNN network. We
use Global Average Pooling (GAP) to flatten the feature
maps into a 1-dimensional vector, and the vector denotes
the high-level feature of the images.

After extracting the features of hand radiographs, we
decompose them into 2-dimensional features by incremen-
tal PCA [24] and kernel PCA [25] with different kernel
functions. Then, we visualize the 2-dimensional feature
distribution. The visualization results are depicted in
Figure 4.

In Figure 4, each row represents the features extracted
from a specific model, and each column represents scatter
plots processed by different PCA methods. Colors in differ-
ent points represent the data with varying ages of bone. The
horizational and vertical axes represent the decomposed
feature value. The numbers of features extracted by the last
layer of VGG, ResNet-50, Xception, Inception-V3, and
Inception-ResNet-V2 are 4096, 1000, 2048, 2048, and
2048, receptively. By applying the PCA algorithm, we
decompose the feature dimension to 2 so that we could
visualize it in 2D plots. Hence, the meaning of Figure 4 is
just to demonstrate which model is suitable for performing
BAA, rather than calculates or visualizes the value of
extracted features.

From the first column in Figure 4, we conclude that fea-
tures extracted by Inception-V3, Inception-ResNet-V2, and
Xception are easy to distinguish since that data with the
same bone ages incline to aggregate into a cluster. In other
words, features of similar labels are gathered and ordered.
On their counterpart for VGG and ResNet, the data repre-
sents with the color of red are prone to gather in two differ-
ent clusters. This is because all of Inception-V3, Inception-
ResNet-V2, and Xception are multiscale deep CNNs. They
have a powerful ability to process different size of hand
bone in preprocessed hand radiographs and generate dis-
tinct features.

A further conclusion is that linear kernel function may
be better for differentiating data compared to RBF kernel
function.

4.2. Bone Age Assessment.With the analysis in Section 4.1, we
adopt support vector regression (SVR) [26] and Kernel Ridge
Regression (KRR) [27] with a linear kernel function. The
penalty parameter of SVR is 1.0, the kernel function of SVR
is linear kernel, and the tolerance for stopping criterion is
1e-3. The kernel function of KRR is linear, the coefficient of
KRR is 3 which leads to a cubic linear function, and the
improvement parameter of KRR is 1.0. Before doing the
regression task, we scale bone ages from [0, 228] months to
a uniform float value [0, 1]. At the inference stage, we project
their bone age back to the original range, i.e., 0 to 228
months. Cross-validation is employed at the training stage
to prevent overfitting and achieve better generalization per-
formance. We set cross fold as 5.

5. Experiment and Discussion

5.1. Data Overview. We obtain hand bone radiograph from
the 2017 Pediatric Bone Age Challenge organized by the
Radiological Society of North America (RNSA) [28]. The
provided dataset contains 12611 left-hand X-ray images with
corresponding bone age ranging from 0 to 228 months. The
bone age distribution for radiographs of all the dataset,
female, and male is depicted, respectively, in Figures 5(a)–
5(c). The horizational axis represents the bone age of months
which the vertical axis indicates the histogram value of rele-
vant patients.

The X-ray data provided by RSNA vary considerably in
intensity, contrast, and brightness. A part of the dataset ran-
domly selected is shown in Figure 6. This variance increases
the difficulty of training a robust and precise segment for
hand image. Furthermore, it prevents algorithms from learn-
ing unified and salient features from the radiographs. The
optimization of parameters always traps in bad local minima
to yield incorrect bone age prediction. In this circumstance, a
robust preprocessing engine plays a vital role in data prepro-
cessing, and the standardized images are essential for model
accuracy. Performing BAA using the whole RSNA dataset is
a challenging task. That is why all the previous works use
only selected part of the dataset.

5.2. Hand Segmentation. Taking our hardware computation
ability and memory space into consideration, we set the com-
mittee size as k = ½3, 5, 7�. That is to say, we train 3 or 5 or 7
U-Nets with the same architecture and initialize their model
parameters with different random seeds. At the initial stage,
we randomly select 100 hand radiographs from RSNA data-
set and manually annotate the hand masks. The training pro-
cedure starts with the labeled 100 paired data. Before feeding
the data into U-Net, we normalize each pixel by using img
= ðimg –meanðimgÞÞ/stdðimgÞ, where mean and std indi-
cate the mean of pixels and standard variance of pixels,
respectively. After each training iteration, we evaluate the
similarity of all the unlabeled data between two U-Nets and
select the data with the lowest similarity. Finally, the designed
interactive training program will tell us which data need to
be annotated.

In practice, in addition to the initial 100 annotated hand
radiographs, we annotated another 200 images within the
first 20 training epochs. After every training epoch, we anno-
tated 10 radiographs and added them to the training dataset.
Then, we trained the committee with another 80 epochs.
The value of loss function convergence at a satisfying stage
and we visually inspect all the predicted masks and keep
all of them. The segmentation results are shown in
Figure 7. As demonstrated in Section 2, RSNA hand radio-
graphs vary considerably in intensity, contrast, and bright-
ness. To enhance model performance, we normalize the
different grayscale bases by using Contrast Limited Adaptive
Histogram Equalization (CLAHE) [29]. Besides, we evalu-
ated the Dice score, sensitivity, and specificity of the segmen-
tation results, shown in Table 1. As a comparison, we use
Fully Supervised Learning (FSL) to train the hand segmenta-
tion network.
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From Table 1, we found that our proposed AL framework
outperforms the FSL model with the same number of anno-
tated training data. A further investigation is that the model
performance is improved with the increment of the number
of members in the committee. The reason behind is that
when we use more members to train the model, the difference
of learned features between different members is increased so
that the probability of choosing the most informative sam-
ples is extremely enhanced in the proposed AL framework.

From Figure 7, we observe that the trained U-Net is
robust so that it can translate raw X-ray images with differ-
ent sizes, different contrast, and different brightness to hand
masks. Fascinatingly more, we achieve this performance by

annotating just 300 images while the RSNA dataset contains
12611 data. In other words, we only labeled about 2.3% data
and our improved U-Net with deep AL framework can
robustly segment hand masks in various hand radiographs.
It is necessary to normalize raw prediction by cropping
hand ROIs from segmented images for enhancing model
performance. The final preprocessed prediction and raw
image with hand mask are depicted in the last two rows in
Figure 7.

5.3. Bone Age Assessment.With the analysis in Section 4.1, we
adopt support vector regression (SVR) [26] and Kernel Ridge
Regression (KRR) [27] with a linear kernel function. The
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penalty parameter of SVR is 1.0, the kernel function of SVR is
linear kernel, and the tolerance for stopping criterion is 1e-3.
The kernel function of KRR is linear, the coefficient of KRR is
3 which leads to a cubic linear function, and the improve-
ment parameter of KRR is 1.0. Before doing the regression
task, we scale bone ages from [0, 228] months to uniform
float value [0, 1]. At the inference stage, we project their bone
age back to the original range, i.e., 0 to 228 months. Before we

trained our neural network, we balanced the data by sam-
pling the same number of data with the same bone age. What
is more important, not only we transferred the well-trained
parameters into our BAA model but also we fine-tuned the
parameters in DCNN with SVR or KRR. Cross-validation is
employed at the training stage to prevent overfitting and
achieve better generalization performance. We set the cross
fold as 5.
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Figure 6: A close-up of part of data in RSNA dataset. Different radiographs vary in size and height-width ratio.
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We use Mean Average Error (MAE), Root Mean Square
Error (RMSE), and Concordance Correlation Coefficient
(CCC) to evaluate proposed methods. The MAE and RMSE
intuitively represent the distance between real and prediction
of bone age (lower is better). The CCC has better perfor-
mance to evaluate the correlation between real bone age
and prediction (higher is better) than R2 score and explained

variance score [30]. The experimental results are shown in
Table 2.

From Table 2, we observe that our models achieve the
best MAE, RMSE, and CCC by using KRR on data trans-
ferred via Inception-ResNet-V2. A further crucial observa-
tion is that all best measures are acquired in the same
setting. Separate regression models for male and female
cohorts demonstrate higher accuracy when compared to
those trained on a mixed population. With a single regressor,
MAEs of the whole dataset, male, and female are 14.83
months, 12.82 months, and 11.93 months, respectively. That
suggests that the loss error is about 1 year on average on a
single patient.

To enhance model performance, we employed ensemble
learning to lower the regression error further. Ensemble
modeling is a powerful way to improve the performance of
the low generalized model by combining a diverse set of
learners and adjusting data weights in training stage. From
Table 1, KRR with Inception-ResNet-V2 achieved the best
performance on all of the evaluations, so we employ KRR
as a base estimator and ensemble them with the Bagging
[31] method and AdaBoost. The performance of ensemble
regression is shown in Figure 8.

In Figure 8, the horizontal and vertical axis represents the
number of base estimators (KRR) used in ensemble learning
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Table 1: Comparison of model performance for hand
segmentation.

Strategy
Number of

annotated samples
Sensitivity Specificity Dice

FSL 300 0.869 0.854 0.869

AL (k = 3) 150 0.864 0.845 0.863

AL (k = 3) 200 0.902 0.895 0.905

AL (k = 3) 300 0.903 0.942 0.939

AL (k = 5) 150 0.896 0.909 0.888

AL (k = 5) 200 0.904 0.925 0.916

AL (k = 5) 300 0.935 0.946 0.931

AL (k = 7) 150 0.879 0.902 0.899

AL (k = 7) 200 0.932 0.934 0.926

AL (k = 7) 300 0.948 0.960 0.952
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and the corresponding evaluations, respectively. From
Figure 8, we further enhance the model performance by Ada-
Boost and Bagging ensemble learning. The final performance
of the proposed methods is listed in Table 3. In Table 3, the
number in brackets indicates the number of base estimators
used in ensemble learning. We lower the error rate about 3
months on each part of dataset compared with a single
KRR estimator without Bagging. In our experiment, Bagging
outperforms AdaBoost. A further observation is that the best
CCC values are enhanced about 0.05 on the male and female
dataset. The experimental results suggest that by using
ensemble learning, the correlation between real and pre-
dicted bone ages is higher than using a single regressor.

Table 4 demonstrates the comparison of the model per-
formance with several existing approaches on BAA tasks.
By observing Table 4, it is clear that our proposed model
dominates over other methods in part of MAE evaluation.

6. Discussion and Conclusions

6.1. Discussion. Using our proposed BAA approach, we
achieved a MAE of 8.59, 6.96, and 7.35 months on all, male,
and female cohorts of the dataset.

Since AL queries unlabeled data and asks Oracle to anno-
tate them, the number of training data is enlarged by the AL
strategy and more labeled data available can benefit in train-
ing neural networks. More importantly, AL inclines to pick
up the most uncertain and informative data for another
training epoch so that the active learner learns the most cru-
cial data in training. Essentially, AL boosts the training pro-
cess so that the trained model can get a better solution.

A further significant investigation is that we proposed a
framework of medical image segmentation to relieve human
expert annotation burden via deep active learning. Feature
vector differences between different members in the commit-
tee are taken into consideration. The members can work
cooperatively to determine which datum is crucial in the
training procedure and then ask oracle to annotate it. In the
segmentation stage, benefitting from deep active learning,
we only annotated 300 images—about 2.3% of the whole
dataset—to make precise hand segmentation.

With the annotated hand X-ray images, our results sup-
port the finding by others demonstrating the effectiveness
and applicability of transferring deep-learning weights to
data from different domains [34]. Transfer learning is
important in our framework since the pretrained network

is required for successful implementation of clinical deci-
sion with a relative small medical image dataset. Further-
more, ensemble learning significantly improves the model
performance.

Although the proposed BAA approach achieved a state-
of-the-art performance, there are also limitations and some
values need to be discussed:

(1) Number of members in the committee. Although we
found the model performance of segmentation net-
works are enhanced with the increment of the num-
ber of members in the committee, the number of
members is hard to determine. Besides, we did not
ensemble the well-trained active learners to inference
the segmentation results simultaneously

(2) The computational complexity of the proposed
model. As demonstrated in [36], the total time com-
plexity of all convolutional layers in a deep network is
as follows:

O 〠
d

l=1
nl−1s

2
l nlm

2
l

 !
, ð3Þ

where l is the index of a convolutional layer and d is the
depth. nl is the number of filter in the lth layer. sl is the spatial
size of the filter, andml is the spatial size of the output feature
map. From (3), we know the time complexity of DCNN is the
combination of each convolutional layer. So the time com-
plexity of the proposed BAA approach is Oðn6Þ
6.2. Conclusions. In this paper, we have investigated the
application of deep transfer learning on medical images,
especially for automated bone age assessment using hand
radiographs. We tested several popular off-the-shell deep
CNNs trained on the RSNA dataset with 12611 X-ray images.
We proved that the transfer learning can cope effectively with
bone age assessment task. By using an ensemble technique,
our model achieved an MAE of 8.59, 6.96, and 7.35 months
on all, male, and female cohorts of the dataset, respectively,
comparable to the state-of-the-art performance. Further-
more, we explained which pretrained CNN is better to per-
form BAA.

In summary, we have created a fully automated, deep
learning-based preprocessing pipeline to automatically detect

Table 2: Performance of different regression methods on different transferred data.

Model Sex
Inception-V3 Xception Inception-ResNet-V2

MAE RMSE CCC MAE RMSE CCC MAE RMSE CCC

SVR (linear)

All 16.4688 21.1794 0.7139 15.6739 20.3728 0.7029 14.2175 18.0785 0.7143

Male 12.8732 17.7263 0.5987 11.9983 13.2222 0.6319 11.7378 14.8372 0.6417

Female 13.2739 17.9381 0.6163 13.6930 14.8271 0.6184 13.0116 17.3823 0.6371

KRR (linear)

All 15.1232 18.2813 0.7004 15.2830 17.7362 0.7793 13.9381 14.8373 0.7293

Male 13.0293 14.2521 0.6313 12.2321 14.9382 0.6098 11.9283 12.8231 0.6563

Female 14.7421 19.0855 0.6277 13.3361 17.3211 0.6176 12.7744 11.9321 0.6473
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and segment the hand and wrist, standardize the images, and
perform BAA with pretrained deep CNNs and high-
efficiency regression model. In practice, our system can be
easily deployed in the clinical environment on a computer
with a single GPU.

7. Future Work

The investigation presented in this paper leaves many chal-
lenges and issues for future research. We summarize the
future work as follows:

(1) The proposed BAA framework, which contains
image segmentation, feature extraction, and ensem-
ble modules, should be validated on other medical
image decision problem

(2) To proof the effectiveness of AL framework theoreti-
cally. Only if we proof it, could we find how many
active learners is enough to form a committee

(3) Ensemble the well-trained active learners and gener-
ate segmentation result simultaneously by AdaBoost
or other ensemble learning algorithms

0

7

8

9

10

11

M
on

th
s

Ad
aB

oo
st

12

13

14

2 4 6 8 10 12 14 16 18 20 22 24
Number of base estimators

7.62 7.60

9.31

MAE

M
on

th
s

0.94 0.940.95

0

0.7

0.6

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16 18 20 22 24
Number of base estimators

26

CCC

8.59

6.96
7.35

0

7

6

8

9

10

11

M
on

th
s

Ba
gg

in
g

12

13

14

2 4 6 8 10 12 14 16 18 20 22 24
Number of base estimators

26

All
Male
Female

M
on

th
s

0.94
0.97 0.97

0

0.7

0.6

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16 18 20 22 24
Number of base estimators

26

Figure 8: Performance of different ensemble regression methods on data transferred by Inception-ResNet-V2.

Table 3: Performance of different ensemble regression methods.

Ensemble method Dataset MAE CCC

AdaBoost

All 9.31 (21) 0.94 (14)

Male 7.62 (14) 0.94 (17)

Female 7.60 (19) 0.95 (19)

Bagging

All 8.59 (21) 0.94 (14)

Male 6.96 (14) 0.97 (17)

Female 7.35 (19) 0.97 (19)

Table 4: Comparison of approaches in BAA in RSNA dataset.

Method MAE (m)

Iglovikov et al. [32] without ensemble 8.08

Iglovikov et al. [32] with ensemble 7.52

Wu et al. [33] 7.38

Han et al. [34] 8.40

Tajmir et al. [35] 7.93

Proposed 7.35
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Data Availability

The X-ray imaging data used to support the findings of
this paper have been deposited in the RSNA repository
at doi:10.1148/radiol.2018180736.
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