9 research outputs found

    A skeletonization algorithm for gradient-based optimization

    Full text link
    The skeleton of a digital image is a compact representation of its topology, geometry, and scale. It has utility in many computer vision applications, such as image description, segmentation, and registration. However, skeletonization has only seen limited use in contemporary deep learning solutions. Most existing skeletonization algorithms are not differentiable, making it impossible to integrate them with gradient-based optimization. Compatible algorithms based on morphological operations and neural networks have been proposed, but their results often deviate from the geometry and topology of the true medial axis. This work introduces the first three-dimensional skeletonization algorithm that is both compatible with gradient-based optimization and preserves an object's topology. Our method is exclusively based on matrix additions and multiplications, convolutional operations, basic non-linear functions, and sampling from a uniform probability distribution, allowing it to be easily implemented in any major deep learning library. In benchmarking experiments, we prove the advantages of our skeletonization algorithm compared to non-differentiable, morphological, and neural-network-based baselines. Finally, we demonstrate the utility of our algorithm by integrating it with two medical image processing applications that use gradient-based optimization: deep-learning-based blood vessel segmentation, and multimodal registration of the mandible in computed tomography and magnetic resonance images.Comment: Accepted at ICCV 202

    Outlier Detection for Shape Model Fitting

    Get PDF
    Medical image analysis applications often benefit from having a statistical shape model in the background. Statistical shape models are generative models which can generate shapes from the same family and assign a likelihood to the generated shape. In an Analysis-by-synthesis approach to medical image analysis, the target shape to be segmented, registered or completed must first be reconstructed by the statistical shape model. Shape models accomplish this by either acting as regression models, used to obtain the reconstruction, or as regularizers, used to limit the space of possible reconstructions. However, the accuracy of these models is not guaranteed for targets that lie out of the modeled distribution of the statistical shape model. Targets with pathologies are an example of out-of-distribution data. The target shape to be reconstructed has deformations caused by pathologies that do not exist on the healthy data used to build the model. Added and missing regions may lead to false correspondences, which act as outliers and influence the reconstruction result. Robust fitting is necessary to decrease the influence of outliers on the fitting solution, but often comes at the cost of decreased accuracy in the inlier region. Robust techniques often presuppose knowledge of outlier characteristics to build a robust cost function or knowledge of the correct regressed function to filter the outliers. This thesis proposes strategies to obtain the outliers and reconstruction simultaneously without previous knowledge about either. The assumptions are that a statistical shape model that represents the healthy variations of the target organ is available, and that some landmarks on the model reference that annotate locations with correspondence to the target exist. The first strategy uses an EM-like algorithm to obtain the sampling posterior. This is a global reconstruction approach that requires classical noise assumptions on the outlier distribution. The second strategy uses Bayesian optimization to infer the closed-form predictive posterior distribution and estimate a label map of the outliers. The underlying regression model is a Gaussian Process Morphable Model (GPMM). To make the reconstruction obtained through Bayesian optimization robust, a novel acquisition function is proposed. The acquisition function uses the posterior and predictive posterior distributions to avoid choosing outliers as next query points. The algorithms give as outputs a label map and a a posterior distribution that can be used to choose the most likely reconstruction. To obtain the label map, the first strategy uses Bayesian classification to separate inliers and outliers, while the second strategy annotates all query points as inliers and unused model vertices as outliers. The proposed solutions are compared to the literature, evaluated through their sensitivity and breakdown points, and tested on publicly available datasets and in-house clinical examples. The thesis contributes to shape model fitting to pathological targets by showing that: - performing accurate inlier reconstruction and outlier detection is possible without case-specific manual thresholds or input label maps, through the use of outlier detection. - outlier detection makes the algorithms agnostic to pathology type i.e. the algorithms are suitable for both sparse and grouped outliers which appear as holes and bumps, the severity of which influences the results. - using the GPMM-based sequential Bayesian optimization approach, the closed-form predictive posterior distribution can be obtained despite the presence of outliers, because the Gaussian noise assumption is valid for the query points. - using sequential Bayesian optimization instead of traditional optimization for shape model fitting brings forth several advantages that had not been previously explored. Fitting can be driven by different reconstruction goals such as speed, location-dependent accuracy, or robustness. - defining pathologies as outliers opens the door for general pathology segmentation solutions for medical data. Segmentation algorithms do not need to be dependent on imaging modality, target pathology type, or training datasets for pathology labeling. The thesis highlights the importance of outlier-based definitions of pathologies in medical data that are independent of pathology type and imaging modality. Developing such standards would not only simplify the comparison of different pathology segmentation algorithms on unlabeled datsets, but also push forward standard algorithms that are able to deal with general pathologies instead of data-driven definitions of pathologies. This comes with theoretical as well as clinical advantages. Practical applications are shown on shape reconstruction and labeling tasks. Publicly-available challenge datasets are used, one for cranium implant reconstruction, one for kidney tumor detection, and one for liver shape reconstruction. Further clinical applications are shown on in-house examples of a femur and mandible with artifacts and missing parts. The results focus on shape modeling but can be extended in future work to include intensity information and inner volume pathologies

    Machine learning approaches to model cardiac shape in large-scale imaging studies

    Get PDF
    Recent improvements in non-invasive imaging, together with the introduction of fully-automated segmentation algorithms and big data analytics, has paved the way for large-scale population-based imaging studies. These studies promise to increase our understanding of a large number of medical conditions, including cardiovascular diseases. However, analysis of cardiac shape in such studies is often limited to simple morphometric indices, ignoring large part of the information available in medical images. Discovery of new biomarkers by machine learning has recently gained traction, but often lacks interpretability. The research presented in this thesis aimed at developing novel explainable machine learning and computational methods capable of better summarizing shape variability, to better inform association and predictive clinical models in large-scale imaging studies. A powerful and flexible framework to model the relationship between three-dimensional (3D) cardiac atlases, encoding multiple phenotypic traits, and genetic variables is first presented. The proposed approach enables the detection of regional phenotype-genotype associations that would be otherwise neglected by conventional association analysis. Three learning-based systems based on deep generative models are then proposed. In the first model, I propose a classifier of cardiac shapes which exploits task-specific generative shape features, and it is designed to enable the visualisation of the anatomical effect these features encode in 3D, making the classification task transparent. The second approach models a database of anatomical shapes via a hierarchy of conditional latent variables and it is capable of detecting, quantifying and visualising onto a template shape the most discriminative anatomical features that characterize distinct clinical conditions. Finally, a preliminary analysis of a deep learning system capable of reconstructing 3D high-resolution cardiac segmentations from a sparse set of 2D views segmentations is reported. This thesis demonstrates that machine learning approaches can facilitate high-throughput analysis of normal and pathological anatomy and of its determinants without losing clinical interpretability.Open Acces
    corecore