96,824 research outputs found

    Size versus stability in the marriage problem

    Get PDF
    Given an instance I of the classical Stable Marriage problem with Incomplete preference lists (smi), a maximum cardinality matching can be larger than a stable matching. In many large-scale applications of smi, we seek to match as many agents as possible. This motivates the problem of finding a maximum cardinality matching in I that admits the smallest number of blocking pairs (so is “as stable as possible”). We show that this problem is NP-hard and not approximable within n1−Δ, for any Δ>0, unless P=NP, where n is the number of men in I. Further, even if all preference lists are of length at most 3, we show that the problem remains NP-hard and not approximable within ÎŽ, for some ÎŽ>1. By contrast, we give a polynomial-time algorithm for the case where the preference lists of one sex are of length at most 2. We also extend these results to the cases where (i) preference lists may include ties, and (ii) we seek to minimize the number of agents involved in a blocking pair

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    Socially stable matchings in the hospitals / residents problem

    Get PDF
    In the Hospitals/Residents (HR) problem, agents are partitioned into hospitals and residents. Each agent wishes to be matched to an agent in the other set and has a strict preference over these potential matches. A matching is stable if there are no blocking pairs, i.e., no pair of agents that prefer each other to their assigned matches. Such a situation is undesirable as it could lead to a deviation in which the blocking pair form a private arrangement outside the matching. This however assumes that the blocking pair have social ties or communication channels to facilitate the deviation. Relaxing the stability definition to take account of the potential lack of social ties between agents can yield larger stable matchings. In this paper, we define the Hospitals/Residents problem under Social Stability (HRSS) which takes into account social ties between agents by introducing a social network graph to the HR problem. Edges in the social network graph correspond to resident-hospital pairs in the HR instance that know one another. Pairs that do not have corresponding edges in the social network graph can belong to a matching M but they can never block M. Relative to a relaxed stability definition for HRSS, called social stability, we show that socially stable matchings can have different sizes and the problem of finding a maximum socially stable matching is NP-hard, though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem

    Solving Hard Stable Matching Problems Involving Groups of Similar Agents

    Get PDF
    Many important stable matching problems are known to be NP-hard, even when strong restrictions are placed on the input. In this paper we seek to identify structural properties of instances of stable matching problems which will allow us to design efficient algorithms using elementary techniques. We focus on the setting in which all agents involved in some matching problem can be partitioned into k different types, where the type of an agent determines his or her preferences, and agents have preferences over types (which may be refined by more detailed preferences within a single type). This situation would arise in practice if agents form preferences solely based on some small collection of agents' attributes. We also consider a generalisation in which each agent may consider some small collection of other agents to be exceptional, and rank these in a way that is not consistent with their types; this could happen in practice if agents have prior contact with a small number of candidates. We show that (for the case without exceptions), several well-studied NP-hard stable matching problems including Max SMTI (that of finding the maximum cardinality stable matching in an instance of stable marriage with ties and incomplete lists) belong to the parameterised complexity class FPT when parameterised by the number of different types of agents needed to describe the instance. For Max SMTI this tractability result can be extended to the setting in which each agent promotes at most one `exceptional' candidate to the top of his/her list (when preferences within types are not refined), but the problem remains NP-hard if preference lists can contain two or more exceptions and the exceptional candidates can be placed anywhere in the preference lists, even if the number of types is bounded by a constant.Comment: Results on SMTI appear in proceedings of WINE 2018; Section 6 contains work in progres

    Stable Matchings for the Room-mates Problem

    Get PDF
    We show that, given two matchings for a room-mates problem of which say the second is stable, and given a non-empty subset of agents S if (a) no agent in S prefers the first matching to the second, and (b) no agent in S and his room-mate in S under the second matching prefer each other to their respective room-mates in the first matching, then no room-mate of an agent in S prefers the second matching to the first. This result is a strengthening of a result originally due to Knuth (1976). In a paper by Sasaki and Toda (1992) it is shown that if a marriage problem has more than one stable matchings, then given any one stable matching, it is possible to add agents and thereby obtain exactly one stable matching, whose restriction over the original set of agents, coincides with the given stable matching. We are able to extend this result here to the domain of room-mates problems. We also extend a result due to Roth and Sotomayor (1990) originally established for two-sided matching problems in the following manner: If in a room-mates problem, the number of agents increases, then given any stable matching for the old problem and any stable matching for the new one, there is at least one agent who is acceptable to this new agent who prefers the new matching to the old one and his room-mate under the new matching prefers the old matching to the new one. Sasaki and Toda (1992) shows that the solution correspondence which selects the set of all stable matchings, satisfies Pareto Optimality, Anonymity, Consistency and Converse Consistency on the domain of marriage problems. We show here that if a solution correspondence satisfying Consistency and Converse Consistency agrees with the solution correspondence comprising stable matchings for all room-mates problems involving four or fewer agents, then it must agree with the solution correspondence comprising stable matchings for all room-mates problems.Stable matchings, Room-mate problem

    Student-Project Allocation with Preferences over Projects

    Get PDF
    We study the problem of allocating students to projects, where both students and lecturers have preferences over projects, and both projects and lecturers have capacities. In this context we seek a stable matching of students to projects, which respects these preference and capacity constraints. Here, the stability definition generalises the corresponding notion in the context of the classical Hospitals / Residents problem. We show that stable matchings can have different sizes, and the problem of finding a maximum cardinality stable matching is NP-hard, though approximable within a factor of 2

    Stable Matchings for a Generalised Marriage Problem

    Get PDF
    We show that a simple generalisation of the Deferred Acceptance Procedure with men proposing due to Gale and Shapley (1962) yields outcomes for a generalised marriage problem, which are necessarily stable. We also show that any outcome of this procedure is Weakly Pareto Optimal for Men, i.e. there is no other outcome which all men prefer to an outcome of this procedure. In a final concluding section of this paper, we consider the problem of choosing a set of multi-party contracts, where each coalition of agents has a non-empty finite set of feasible contracts to choose from. We call such problems, generalised contract choice problems. The model we propose is a generalisation of the model due to Shapley and Scarf (1974) called the housing market. We are able to show with the help of a three agent example, that there exists a generalised contract choice problem, which does not admit any stable outcome.Stable outcomes, Matchings, pay-offs, Generalised marriage problem, Contract choice problem

    Children’s Experiences of Family Disruption in Sweden

    Get PDF
    This paper examines the living arrangements of Swedish children from 1970 through 1999 using the Level of Living Survey. Sweden, with low levels of economic inequality and a generous welfare state, provides an important context for studying socioeconomic differentials in family structure. We find that, although differences by parent education in non-marital childbearing are substantial and persistent, cohabiting childbearing is common even among highly educated Swedish parents. Educational differences in family instability were small during the 1970s, but increased over time as a result of rising union disruption among less-educated parents (secondary graduates or less). Children in more advantaged families experienced substantially less change in family structure and instability over the study period. Although cohabiting parents were more likely to separate than parents married at the child’s birth, differences were greater for the less-educated. Data limitations precluded investigating these differences across time. We conclude that educational differences in children’s living arrangements in Sweden have grown, but remain small in international comparisons.children, cohabitation, family dynamics, family structure
    • 

    corecore