623 research outputs found

    Design and Implementation of a Method Base Management System for a Situational CASE Environment

    Get PDF
    Situational method engineering focuses on configuration of system development methods (SDMs) tuned to the situation of a project at hand. Situational methods are assembled from parts of existing SDMs, so called method fragments, that are selected to match the project situation. The complex task of selecting appropriate method fragments and assembling them into a method requires effective automated support. The paper describes the architecture of a tool prototype offering such support. We present the structure of its central repository, a method base containing method fragments. The functions to store, select and assemble these method fragments are offered by a stratified method base management system tool component, which is described as wel

    Using contextual goal models for constructing situational methods

    Get PDF
    Situation and intention are two fundamental notions in situational method engineering (SME). They are used to assess the context of an ISD project and to specify method requirements in this context. They also allow defining the goals of the method chunks and the conditions under which they can be applied. In this way, the selection and assembly of method chunks for a particular ISD project is driven by matching situational method requirements to method chunks’ goals and context descriptions. In this paper we propose the use of contextual goal models for supporting all SME steps. Our approach is based on iStar2.0 modeling language that we extend with contextual annotations.Peer ReviewedPostprint (author's final draft

    Comparison of method chunks and method fragments for situational method engineering

    Full text link
    Two main candidates for the atomic element to be used in Situational Method Engineering (SME) have been proposed: the “method fragment ” and the “method chunk”. These are examined here in terms of their conceptual integrity and in terms of how they may be used in method construction. Also, parallels are drawn between the two approaches. Secondly, the idea of differentiating an interface from a body has been proposed for method chunks (but not for method fragments). This idea is examined and mappings are constructed between the interface and body concepts of method chunks and the concepts used to describe method fragments. The new ISO/IEC 24744 standard metamodel is used as a conceptual framework to perform these mappings
    corecore