
Harmsen, F., S. Brinkkemper, H. Oei, Situational Method Engineering for
Information System Project Approaches. In: A.A. Verrijn Stuart and T.W. Olle (Eds.),
Methods and Associated Tools for the Information Systems Life Cycle. Proceedings
of the IFIP WG 8.1 Working Conference, Maastricht, Netherlands, September 1994,
IFIP Transactions A-55, North-Holland, 1994, ISBN 0-444-82074-4, pp. 169-194.

Situational Method Engineering

for Information System Project Approaches

Frank Harmsen, Sjaak Brinkkemper, Han Oei

Centre for Telematics and Information Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, the Netherlands,
E-mail {harmsen, sjbr, oei}@cs.utwente.nl

ABSTRACT
The purpose of this paper is to give an overview of Situational Method Engi-
neering, which is a type of method engineering. Situational Method Engineering
aims at harmonisation of methods by providing rules to configure project-specific
methods out of fragments from existing standard methods. It stems from the
need for controlled flexibility, which is a compromise between the ad-hoc tuning
of methods and the application of rigid, standard methods. Method fragments
are stored in a method base, which constitutes the central repository of a Com-
puter Aided Method Engineering (CAME) tool. The CAME tool is used to
manipulate method fragments in order to configure project-specific methods. We
present a model of the method base, as well as operations on method fragments
and examples of required consistency rules for a configured method. Moreover,
we discuss the spectrum of approaches to Situational Method Engineering. The
paper is concluded with a description of the CAME tool under development.

Keyword Codes: D.2.0; H.1.0; K.6.3

Keywords: Software Engineering, General; Information Systems, Models and
Principles, General; Computing Milieux, Management of Computing and
Information Systems, Software Management

1

TABLE OF CONTENTS

ABSTRACT.. 1

1. INTRODUCTION .. 3

1.1. Harmonisation and Standardisation of methods ...4

1.2. Scope of Method Engineering...5

1.3. The Principle of Controlled Flexibility...8

1.4. Overview of the paper and case description ...10

2. FUNDAMENTALS OF SITUATIONAL METHOD ENGINEERING 11

2.1. Types of method fragments...12

2.2. Method assembly with method fragments ..16

2.3. Formalisation of method fragments ..18

3. APPROACHES TO SITUATIONAL METHOD ENGINEERING............................... 20

3.1. The Situational Method Spectrum ..20

3.2. Issues in Situational Method Engineering approaches23

4. COMPUTER AIDED METHOD ENGINEERING ... 25

4.1. CAME Tool requirements...26

4.2. Architecture of a CAME Tool ..28

5. CONCLUSIONS AND FURTHER RESEARCH.. 30

REFERENCES ... 32

2

1. INTRODUCTION

Methods for information systems development are always of a generic nature.
Guidelines, techniques and steps in the method handbooks depart from an
average project in an idealised, fixed context to which the method is being
applied. Reality is different. Methods are never followed literally, they are tuned
to the situation at hand. Steps are left out, or included, milestones and
deliverables are settled. Knowledge and experience of the project team determine
the structure of the development process and the resulting products in order to
deliver the desired information system (IS). All kinds of project factors related to
the technology, the development expertise, the external factors and application
domain characteristics induce an approach specific for the project.

From a methodological standpoint (taking methodology as the study of methods)
is the current situation in the area of methods for information systems
development (ISD) frankly disastrous. The recent interest into the paradigm of
object-orientation has yielded numerous new different methods (among others
[Coad 90], [Rumbaugh 91] and [Wirfs-Brock 90]) requiring comparison studies,
such as [Hong 93], to reveal the strengths and weaknesses of the methods to the
poor practitioner.

There will always be new emergent paradigms and technology break-throughs:
client-server architectures, groupware/CSCW, workflow management, and multi-
media are some of the recent ones. Will these also require new methods? The
study of Hong et al. [Hong 93] shows that large parts of the new methods are
taken from other methods and techniques. This gives rise to a new thinking in
the IS methodology: method engineering. Configuration of ISD methods from
proven parts of existing methods is the kernel of method engineering. This paper
will focus on a particular subarea, namely the construction of project specific
methods, so-called situational method engineering. The importance of the notion
of scenario, which is a project-specific method, was also recognised in chapter two
of [Olle 91]. The scenario philosophy has been further elaborated by Kumar and
Welke, who introduced Methodology Engineering, being a method to develop and
implement methods [Kumar 92]. A method representation model to analyse and
compare existing methods, as well as a tool to manipulate that model in order to
build methods, was presented in [Heym 93]. In [Saeki 93], a data base called
Method Base is described from which several complete methods can be selected.
The Viewpoints approach considers also the integration of several methods and
tool components into one method [Nuseibeh 92]. We will first discuss this new
advancement against the background of harmonisation and standardisation of
ISD methods.

3

1.1. Harmonisation and Standardisation of methods
To date numerous methods, techniques and tools coexist in the information
system society, all aiming at the structuring and support of the information sys-
tem adaptation or development process. Though there may be –good and bad–
reasons for this proliferation of methods and tools, the situation is that it is hard
for an organisation to compare a set of methods, techniques and tools on a firm
basis, and to select or construct a method that is appropriate or suitable for a
specific information system project, from this “Methodology Jungle”, a term intro-
duced in [Avison 88].

To resolve this problem, various frameworks for comparison and/or selection have
been developed. These frameworks differ in their purpose and underlying
philosophy, scope and perspective. Some frameworks aim at standardisation,
others provide tools and techniques for harmonisation rather than
standardisation. In case of standardisation, one or a few methods are selected
and proposed as a standard for any information system project to overcome the
proliferation of methods. In case of harmonisation, one does not select a fixed
standard, but aims at an open transformation scheme between methods. This
transformation scheme may serve for comparison, integration, or evolution of
methods [Oei 94].

The scope of a framework can be methods covering the complete life-cycle, or be
limited to part of these methods, i.e. techniques, languages, and tools, which are
often restricted to particular phases of the life-cycle only (e.g. planning, analysis,
design or maintenance). Furthermore, different perspectives can be
distinguished; a framework developed from a user's perspective differs from a
framework developed from a modeller's perspective. Different scopes and
perspectives also require and allow different levels of formality. For example, a
technique for database specification for a database specialist requires and allows
much more formality than a requirements specification technique for an
information analyst or a project planning technique for a project manager.

The reference framework of the CRIS task group of IFIP WG 8.1 ([Olle 91])
provides a unified view on various Information Systems Development Methods
(ISDMs) along the dimension of development phase (planning, analysis, and
design) versus modelling perspective (data, process, behaviour). The reference
framework, being a contribution to the methodology of information systems, can
be used for the assessment of ISDMs.

An approach aiming at a more formal comparison of techniques is the Meta
Model Hierarchy-framework [Oei 92; Oei 94]. This framework provides a
technique for comparison, integration, and evolution of modelling languages on
the basis of a basic set of transformations being defined among meta models of
these languages. This basic set of transformations is based upon application in-

4

dependent criteria: for instance, the genericity, liberality and expressiveness of
languages. The Meta Model Hierarchy-framework aims at harmonisation rather
than standardisation, because it does not select one or a few techniques as a
standard, but provides an open transformation scheme between techniques.

The FRISCO task group of IFIP WG 8.1 [Lindgreen 90] aims at a framework for
fundamental information system concepts. The philosophy of FRISCO is that it is
essential to understand the fundamental concepts behind information systems, in
order to improve the understanding, use and development of information
systems as part of an organisation.

Euromethod [Euromethod 93] is developed from a practitioner's point of view. It
aims at the improvement of the customer-supplier relationship during an infor-
mation system development project. For this purpose, Euromethod serves as a
communication-bridge between the terminology, concepts and methods on the
customer side and those on the supplier side. Therefore it aims at standardisa-
tion on the communication level without forcing the parties to leave their own
methods on the development level.

All these frameworks aim at either standardisation or harmonisation of methods
or parts of methods. The major benefit of standardisation is that it improves
communicability among all information system parties. However, if standardi-
sation leads to rigidity, flexibility is in danger to tune methods or method prod-
ucts to its project-specific needs. Also the gain of standardisation is completely
dependent on the acceptance of the standard. History has learned that never a
100% acceptance will be reached, and that the acceptance level will fluctuate.

The Situational Method Engineering approach we will discuss in this paper, tries
to take the best of two worlds. We aim at the harmonisation of methods by
providing a discipline to construct methods out of existing, proven method
fragments. These methods are tuned to the situation in which they are applied.
That is, we try to both preserve the benefits of standardisation by definition and
reuse of so-called method fragments, and to improve flexibility by providing a
means –the Situational Method Engineering discipline– to tune a method to the
project-specific needs. The scope of Situational Method Engineering is in
principle the complete life-cycle. Furthermore, both the development perspective
and the project management perspective are considered. Finally, the level of
formality will be determined by what is required and allowed for each aspect of
the Situational Method Engineering discipline.

1.2. Scope of Method Engineering
We consider an Information Systems Development Method (ISDM) as a collection
of procedures, techniques, tools, and documentation aids which will help the
systems developers in their effort to implement a new information system
[Avison 88]. Note that Euromethod introduces the more appropriate term

5

Information Systems Adaptation, meaning the modification, enhancement,
improvement, and/or automation of an information system to fulfil the ever
changing needs of an organisation [Euromethod 93]. However, the word
development in ISDM is kept for recognizability. An ISDM should be integrated,
i.e. should comprise not only the steps to be carried out, but also the supporting
tools, and descriptions of the products to be delivered. However, since very few
ISDMs and CASE tools are completely integrated, we continue to speak about
ISDMs and CASE tools. Moreover, the terms ISDM and method are used inter-
changeably. ISDMs tuned to a specific situation are called situational methods.

We consider an approach to be a way to perform an IS project. An IS project is a
temporary organisation, with an adapted information system as goal. This
adaptation stems from a certain IT-need, formulated by an organisation.

The term methods engineering was first introduced in mechanical engineering as
the co-ordinated and systematic approach of improving work methods [Maynard
39]. We define method engineering [Kumar 92; Heym 93; Slooten 93] as the
engineering discipline to design, construct and adapt Information Systems
Development Methods, including CASE tools. Situational Method Engineering is
the area of method engineering focusing on situational methods.

From the examples of method engineering studies we have reviewed, we conclude
that method engineering can be viewed on three levels: the macro level of
systems development organisations, the meso level of systems development
projects, and the micro level of systems development techniques. We will here
only deal with the systems development projects, but in related studies we deal
with the other types of method engineering.

6

Characterisation
of project

Selection of method
fragments and
method assembly

Project performance

validation

situational method

project factors

characterisation

Method Base

Project environment

Figure 1.1 The process of configuration of situational methods

The process of configuring a situational method is depicted in figure 1.1, which is
an adaptation of a similar figure in [van Slooten 93]. Starting point is a given,
dynamic and evolving project environment, being part of a larger organisational
setting. The project environment includes the existing information
infrastructure, the users, the organisational culture of both the supplier
organisation and the customer organisation. Project or contingency factors, such
as application characteristics, external factors, technical factors, and the
available development expertise, are in some way or another determined forming
a project characterisation. This characterisation is input to the process of
selecting suitable method fragments from the method base and assembling them
into a situational method. As this process involves human operations the
resulting method requires validation with respect to the project environment.
The method is applied in the project, where it may turn out to be necessary to
refine or adapt the method. This may be due to the changing project environment
or to the clarification of the project characterisation, i.e. project contingencies
that were not clear before can now be rated. We did not include in figure 1.1 the
experience accumulation of performed methods into the method base. Parts of
methods that are evaluated by the project team as very powerful can be
formalised and entered into the method base by the methods administrator.

7

Figure 1.2 depicts the relationship between project, approach, ISDM, and
situational method on the basis of the evolution of ISDMs and situational meth-
ods. We see that standard ISDMs (M1, M7) arise from - more or less ad-hoc -
practical approaches (A2, A3, A6, A7, A8) followed to perform information
systems development projects. This is how in the seventies methods like
Structured Analysis [Yourdon 89] and JSD [Jackson 83] arose. However, these
standard methods are adapted, in order to meet the requirements of the situation
at hand or the current state of technology. The result of such an adaptation is a
situational method (S1, S2). When a situational method has been used in a lot of
projects, it is possible that it becomes a new standard ISDM (M3). For instance,
most object-oriented methods evolved from situational methods. Often, these
situational methods were adaptations of available standard methods, because
object-oriented programming languages were employed. In this way, standard
methods emerged like Object Oriented Analysis/Object Oriented Design [Coad
91], being a further development of Modern Structured Analysis supplemented
with object-oriented concepts.

Figure 1.2 The ISDM life cycle

Note that arrows with small arrowheads depict "is conducted with" relationships,
whereas the other arrows depict "evolves" relationships.

1.3. The Principle of Controlled Flexibility
Situational Method Engineering stems from the observation that standard
information system development methods cannot anticipate adequately to new

8

developments and to specific situations, which makes the current practice of the
tuning of existing methods almost inevitable. However, this ad-hoc tuning affects
the advantages of using a method, such as standardisation, control, effectiveness
and efficiency, in a negative way. Therefore, it is necessary to strike the golden
mean between those known benefits, which we consider as the prerequisites of
Situational Method Engineering, and flexibility. We believe that this can be
achieved by constructing so-called situational methods, with standardised and
proven building blocks, in a controlled and formalised way, and making use of a
uniform terminology. This is how we want to obtain controlled flexibility.

Situational Method Engineering contributes to the realisation of the following
ISDM requirements:

• Flexibility. Situational Method Engineering pre-assumes that the method to
be used in a certain information systems development project is situational,
that is, completely tuned to the project situation at hand, resulting in an
approach that is as flexible as possible.

• Experience accumulation. The full but controlled adaptability of the
method allows for the addition of project experience. This can be achieved by
adapting the method building blocks, which are stored in a central data base.
This experience can then be used again in new projects.

• Integration and communication. In Situational Method Engineering, no
difference is made between method and supporting tools; it is a necessary
prerequisite that they should be integrated. All tools are based on one common
Systems Engineering repository, in which also the building blocks of methods
are stored. Besides the tools that are usually applied in projects, such as
CASE tools, word processors, and project management tools, we envision
CAME tools [Kumar 92; Harmsen 93; Heym 93], supporting the construction
of the situational method.

• Quality. The fact that flexibility should be controlled guarantees that the
constructed situational method meets the same quality requirements as
standard methods do. The flexibility and open architecture of the method
allows also for an easy integration of simulation tools and formal
specification languages. The standardisation of the method building blocks
facilitates the measurement of important project characteristics.

Figure 1.3 depicts the philosophy of controlled flexibility. Harmonisation is ob-
tained by harmonising the building blocks of methods, thus getting the best of
both worlds: on the one hand the flexible ways to develop information systems,
and on the other hand the rigid, standard approaches. Similar outcome was
obtained by the comparative study into the rigidity of rule checking mechanisms
in CASE tools [Vessey 92]. The study positioned CASE tools in a spectrum
consisting of rigid, flexible and guiding. Preference was shown for the middle of
the spectrum.

9

Figure 1.3 Controlled flexibility: harmonisation between flexibility and
standardisation

1.4. Overview of the paper and case description
This paper is organised as follows. Section 2 introduces the notion of method
fragment. Relationships between method fragments, operations with method
fragments, and consistency rules are outlined. Moreover, a summary of the
formalisation of method fragments is described. In section 3 overall approaches to
Situational Method Engineering are described. Situational Method Engineering
is placed in a historical context, and differences with more traditional approaches
to information systems development are outlined. Section 4 deals with
computerised support for Situational Method Engineering. The paper concludes
with a number of conclusions and a description of further research.

Throughout this paper, the theory is illustrated by examples that are taken from
a modified Inventory Control and Purchase case [Olle 88]. The description of this
case is the following.

The XYZ company has an inventory control system, running on a mainframe
computer. However, maintenance costs of the hardware and software are growing
fast, and users are complaining about the rudimentary user interface. So, the
management of XYZ decides to hire ABC management consultants, and instructs
them to start a new ICPS (Inventory Control and Purchase System) project. In this
project, the current system should be adapted, with at least the following
requirements:

• The system should have an average response time below 1 second;

• The system should run under OS/2, version 2 or higher;

• The system should have a functionality that is at least the same as the current
system;

• The total costs of the project should not exceed 100,000 ECU;

• The data bases of the current inventory control system should be transferred
without loss of any data.

10

2. FUNDAMENTALS OF SITUATIONAL METHOD ENGINEERING

The building blocks of a situational method are called method fragments. In
principle, any coherent product, activity, or tool being part of an existing generic
or situational method is a method fragment. This concept will be described more
comprehensively in sub-section 2.1. A special kind of method fragment is a
method outline. This is a method for which only the main steps, products, or tools
have been defined, leaving room for a further project-specific elaboration. An
example of a method outline for software package selection, which is something
that will be performed in the ICPS project, is shown in figure 2.1.

Packaged Systems Selection and Design

Organization

Packaged Systems Selection and Design

Survey and
Screen

Criteria
Development

Evaluate and
Select

Conversion
Planning

Confirm and
Design

Cost/Benefit
Analysis

Management
Review and
Approval

Figure 2.1 Method outline for packaged systems selection and design (taken
from [Method/1 92])

Method fragments for the construction of a situational method have to be defined
and inserted into a method base. A method base is the central repository of a
Computer Aided Method Engineering (CAME) tool. Such a tool provides support
for selection and manipulation of method fragments. Ideally, a CAME tool
supports the entire process of Situational Method Engineering [Slooten 93].
CAME tools will be discussed in section five. For Situational Method Engineering
two new functions are required: the method engineer, who is responsible for the
configuration of the situational method, and the methods administrator, who is
responsible for the contents of the method base. Both roles are to be supported by
the envisioned CAME tool.

11

2.1. Types of method fragments
In order to be able to describe both process and data perspective of methods, we
distinguish between process fragments and product fragments. Product fragments
are the products and sub-products to be delivered by a method, such as
deliverables, milestone documents, models, diagrams, etc. Process fragments
represent the stages, activities and tasks to be carried out in order to produce
product fragments. Descriptions of product fragments are often referred to as
meta data models, descriptions of process fragments are also called meta process
models [Brinkkemper 90; Marttiin 93]. Examples are shown in figure 2.2 and 2.3.

Figure 2.2 Description of a product fragment

Figure 2.2 is a description of the product fragment “Binary Entity Relationship
Diagram without subtyping”, a simple variant of ERD. Note that, for the notation
of meta data models, we use the Extended Entity Relationship model as
described in [Batini 92]. We see that this product fragment contains three
concepts, The concept Entity is involved in one or more relationships, and has
zero or more attributes.

12

Figure 2.3 Description of a process fragment

Figure 2.3 is a Task Structure Diagram [Bots 87] of the process fragment
“Convert Data Model”. Rounded rectangles denote tasks, circles denote decisions,
arrows denote triggers. This activity starts with the assessment of available
system documentation. If the data model is available, then it is inspected,
otherwise a new data model is constructed. The other tasks are self-evident. All
tasks of this activity are decomposable

Fragments can be considered on a conceptual level, but can also be considered as
descriptions of tools or part thereof. The first type is called conceptual method
fragment, the latter type technical method fragment. This is similar to the
distinction between the conceptual level and the internal level in the
ANSI/SPARC information systems architecture. Conceptual method fragments
represent methods or part thereof, such as model descriptions and activities.
Technical method fragments are required in order to be able to include
components of CASE tools, such as diagram editors and repositories, in the
situational method. Besides these two types, we also distinguish external method
fragments, for views of project members on the method. This will be discussed in
a forthcoming paper.

13

The various types of method fragments and their relationships are depicted in
figure 2.4. Note that this diagram represents the data model of a method base (a
meta-meta model), albeit in a simplified manner for ease of presentation.

Figure 2.4 Data model of the method base

This data model contains several types of relationships:

• Relationships between fragments of the same type, which can be partitioned
into:

• relationships between granularity levels, such as the “Product fragment
consists of Product fragment” relationship. An instance of this relationship
is Functional system design consists of Data model, and

•••• precedence relationships, which are only defined between process frag-
ments, but which can be derived for product fragments. An instance of such
a relationship is Perform Information Planning precedes Perform Require-
ments Analysis.

• Relationships between fragments of different types, which can be partitioned
into:

• support relationships, such as Technical Product Fragment supports
Conceptual Product Fragment. These relationships express the fact that a
conceptual method fragment, for instance an ERD meta model, is supported

14

by a technical method fragment, for instance the corresponding relational
table code of the repository's ERD part (see figure 2.5).

• input/output relationships, expressing the fact that product fragments are
required and are produced by process fragments. For instance, the process
fragment “Construct data model” depicted in figure 2.3 produces an Entity
Relationship Diagram, which is a product fragment.

Figure 2.5 Example of a support relationship

15

These four types of relationships can be used to check different kind of consis-
tencies in a situational method. This issue will be discussed in the next sub-
section.

In the complete data model, also properties of the concepts are included.
Concepts and relationships to denote meta models of method fragments are
considered as well. Moreover, relationships can be refined, such as the “produces”
relationship that can be partitioned into “creates” and “updates” relationships.
Examples of properties of a method fragment are: goal, purpose, actors
responsible for the fragment, complexity, amount of experience needed to deal
with it, and resources. Some concepts and relationships of, for instance, a meta
process model can be: the concepts task and trigger, and the relationship trigger
is input of task.

2.2. Method assembly with method fragments
In order to build situational methods, operations that manipulate method
fragments are needed. These operations are facilities offered by the CAME tool.
We consider three types of operations on method fragments:

• Administration operations, which are to be used to insert new fragments into
the method base, to update fragments, and to delete fragments. An example of
such an operation is: Insert the Method/1 fragment “Complete Technical
Design”.

• Selection operations, which are used to retrieve method fragments from the
method base. An example of such an operation is: Retrieve all data base
conversion fragments.

• Assembly operations, which are used to configure the method fragments of the
working set in order to assemble a situational method. An example of such an
operation is: combine fragment “Make data model for new database” with
fragment “Complete Technical Design”.

When assembling a situational method, several types of consistencies should be
checked. These consistencies are derived from the four types of relationships
identified in the data model of the method base.

The following types of consistency are distinguished:

• Consistency between granularity levels of the situational method. It should
not be possible to combine fragments with very different granularity levels,
for instance an activity “Identify data stores” preceded by a stage
“Information Planning”. This type of consistency is very hard to check when
fragments of different ISDMs are compared, because granularity levels are
difficult to measure. In order to obtain a pragmatic solution to this problem,
we have represented several ISDMs as trees. To each level of a tree, a number

16

has been assigned, starting with the root. For instance, the sub-tree depicted
in figure 2.6 consists of the levels 4, 5 and 6 of the ISDM Navigator
[Navigator 91].

Information
Model

BA Strategy
Model Objects

BA Process
Model Objects

BA Organiza-
tion Model
Objects

BA Data Model
Objects

BA Information
Model
Associations

BA Strategy
Intra-model
Associations

BA Process
Intra-model
Associations

BA Organization
Intra-model
Associations

BA Data
Intra-model
Associations

Inter-model
Associations

Business Area

Business Area

 Figure 2.6 Product fragment tree

 The different levels of the tree correspond to granularity levels. Table 2.1
depicts examples of process fragments and product fragments of the
granularity levels of Navigator.

 Process Fragment Product Fragment

1 Perform Navigator Converted ICPS

2 Analysis phase Analysis deliverable

3 Business Area Requirements Analysis Requirements Analysis report

4 Develop BAIM Business area information model (BAIM)

5 Create BAIM associations BAIM association

6 Create BA Inter-model associations BA Inter-model association

 Table 2.1 Granularity levels of Navigator

• Precedence consistency, i.e. consistency between consecutive stages of the
situational method, including the products that are delivered consecutively.

17

For instance, the task “Inspect data model” of figure 2.3 should be preceded by
a task that checks whether a data model is available. Also, this task requires
a data model, which should be made available by a preceding task.

• Support consistency, i.e. consistency between conceptual and technical
method fragments. Conceptual method fragments should be linked to the
right technical method fragments and vice versa. It should not be possible
that, for instance, an ERD is supported by a DFD editor.

• Input/output consistency, i.e. consistency between the data and the process
perspective of a method. A product should always be produced by a
corresponding activity. For instance, an ERD should not be defined as a
product in a situational method without providing the ERD modelling
procedure.

2.3. Formalisation of method fragments
In this sub-section we present a summary of the formalisation of method
fragments [Harmsen 94]. This formalisation constitutes the basis of Situational
Method Engineering consistency check rules.

In order to be able to reason about fragments, we introduce the following sets:

 M : the set of method fragments

 P : the set of process fragments

 R : the set of product fragments

Recall from sub-section 2.1 that M P R= ∪ , and that P and R are disjoint.
Furthermore, we define

 Mc : the set of conceptual method fragments

 Mt : the set of technical method fragments

Pc, Pt, Rc, and Rt are defined similarly.

We also define:

 V : the set of textual property values

 N : the set of natural numbers

It is assumed that for each relationship a predicate is defined that tests whether
instances of fragments are involved in an instance of that relationship. The
predicates of this kind we use in this sub-section are:

 predicate consists_of over M M×

 predicate precedes over P P×

 predicate requires over P R×

18

 predicate produces over P R×

 predicate supports over M Mt c×

For instance, consists_of(x,y) is valid when for two given method fragments x and
y, x consists of y. Note that product fragments can only consist of product
fragments, and that process fragments can only consist of process fragments:

 consists_ of(x y x P y P x R y R,) () ()� ∈ ∧ ∈ ∨ ∈ ∧ ∈

We also presuppose for each property of a method fragment the availability of a
function with which the value of that property can be retrieved. In this sub-
section we use:

 function goal over M to V

 function level over M to N

For instance, level(Business Area Information Model) yields 4, which is the level
of this product fragment (see sub-section 2.2).

The set of method outlines can be defined as a subset of M:

 O m M m⊆ ∈ ≤{ |) }level(3

Rule 1 and 2 are examples of consistency rules with respect to granularity levels.
Rule 1 states that the level number of a fragment is one higher than the level
number of its constituent parts:

 ∀ ∈ → = +m m M m m m m1 2 1 2 1 2 1, [,)))]consists_ of (level(level((1)

Rule 2 is a heuristic expressing that the levels of consecutive fragments in a
method should not differ more than two:

 ∀ ∈ → − <m m M m m m m1 2 1 2 1 2 3, [,)))]precedes(level(level((2)

Rule 3 is an example of a precedence consistency rule. If a process fragment
requires a product fragment, this should be produced by a preceding process
fragment:

 ∀ ∈ ∀ ∈ ∃ ∈ → ∧p P r R p P p r p r p p2 1 2 1 1 2[,) ,) ,)]requires(produces(precedes((3)

Note that the precedes relationship is transitive.

Rule 4 is an example of a support consistency rule, and states that a conceptual
method fragment should always be supported by its corresponding technical
method fragment. This requirement will be met if the goals of the fragments are
the same:

 ∀ ∈ ∀ ∈ →t M c M t c t ct c [,))](supports(goal() = goal((4)

19

Rule 5 is an example of an input/output consistency rule; it expresses the
requirement that each product fragment should be produced by a process
fragment:

 ∀ ∈ ∃ ∈r R p P p r[,)produces(] (5)

3. APPROACHES TO SITUATIONAL METHOD ENGINEERING

In this section, we outline a spectrum in which several information systems
project approaches are placed according to their degree of flexibility. Then we
proceed with the description of several strategies aimed at the development of
situational methods.

3.1. The Situational Method Spectrum
Considering the flexibility of methods, we distinguish in principle six approaches,
varying from information systems development using a rigid standard method to
a full use of Situational Method Engineering concepts. These six approaches can
be placed in the so-called “Situational Method Spectrum”, with which methods
can be classified according to their degree of -controlled- flexibility.

Figure 3.1 The Situational Method Spectrum

To clarify each approach, we added to each description an example taken from
the ICPS case.

20

• Use of “rigid” methods. A rigid method is a standard ISDM that inherently
leaves no room for situational adaptation. Rigid methods adopt certain
standards, based on one philosophy and suitable for one type of project. They
consist of a fixed set of techniques, modelling procedures, and CASE tools.
They provide no concrete guide-lines for adapting the ISDM to other project
types.

The adaptation of the inventory control system according to the standard
ISDM Systems Engineering Methodology (SEM) employed by ABC is
problematic. Like almost every standard ISDM, SEM aims at IS
development, so the method has to be adapted by the project manager,
which is time-consuming and completely intuition-driven. The quality of
the resulting adapted method is doubtful.

• Selection from rigid methods. The second approach is the selection of one of
the rigid methods, based on the project situation. After the choice of the most
suitable ISDM for the project at hand, the method will be used without
adaptations. Generally, method selection involves a lot of additional purchase
and training costs [Kumar 92]. Moreover, it is still unlikely that the selected
method meets all requirements of the project at hand.

It turns out that there are two methods available aiming at information
system adaptation. Both are, however, expensive, and the consultants of
ABC are not used to particular exotic features. Moreover, both methods
are too comprehensive for the ICPS project.

• Toolkit/Multiview approach. Another way to incorporate flexibility into
information systems development is the strategy employed by the “Toolkit”
[Benyon 87] or “MultiView” [Avison 90] approaches, which boils down to the
inclusion of several methods, each addressing a specific aspect of the object
system, into one method. It is dependent on the situation whether one of these
“sub methods” will be employed in the project approach.

Although the number of aspects covered would increase, it makes no
sense for ABC to obtain a method based on the Toolkit/Multiview
approach. Even if the method would consider information system
adaptation, it is still too large for this project.

• Paths within one method. The fourth approach is the use of a method that
enables to choose between several paths within the method. A well-known
example of such a choice possibility is the difference being made in several
methods between “classic” application development and “rapid” application
development. More recently, there is a trend visible towards the inclusion of
more paths, such as package selection, knowledge based systems
development, and object-oriented development. An often used metaphor is the
"Software Factory", in which the paths are represented by assembly lines.

The choice of the method “Pilot”, offering a number of paths, including
information systems adaptation and data base conversion seems to be an

21

attractive option. Although some adaptation is still needed, such a path
is relatively well tuned to the situation of the ICPS project. However,
ABC develops also a lot of information systems with real-time aspects,
and “Pilot” contains no path devoted to real-time information systems
development.

• Selection and tuning of a method outline. A further elaboration of this
principle is the possibility not only to choose between different approaches,
but also to tune a selected approach to the situation at hand. This involves the
selection of a global method process model and data model, which will be
further refined and adapted by the project manager. In order to do this
efficiently, the method should be electronically available, and should be
supported by method adaptation tools.

 The new state-of-the-art integrated CASE tool “AutoPilot” contains,
besides an electronic version of “Pilot”, also a method manipulation tool.
With this tool, the project manager is able to adapt paths and to include
new paths into the method. The workbench can therefore be employed for
the ICPS project, but also for projects for which a path has not been
defined yet.

• Modular method construction. The most radical solution, given the
prerequisites mentioned before, is the modular construction of situational
methods out of pre-defined building blocks, the method fragments. The
fragments are available in one format, and are stored in a method base. They
are assembled using rules that should guide the method engineer in
constructing an effective, efficient, complete and consistent situational
method.

The new version of “AutoPilot” will be augmented with a method base. In
this method base, not only descriptions of activity sequences are stored,
but also descriptions of products. Moreover, -diagram- editors supporting
the activities and repository descriptions are available, and are fully
adaptable. Guidance and quality criteria are provided for the
construction of situational methods

Note that the Situational Method Spectrum has to be interpreted with great care;
it is obvious that flexibility is something that is very hard to measure. Note also
that this spectrum depicts a chronological overview of the use of methods,
starting with the advent of the use of standard methods, and ending with a
situation that we envision to appear in large organisations by the end of this
century.

The current situation concerning commercial methods is the following. Most of
the modern commercial methods incorporate several aspects, most methods offer
also a possibility to choose between two or more paths. Few methods are on-line
available, offering controlled adaptation. There exist no commercial ISDMs that
have adopted the modular method construction approach, although many large

22

consultancy firms and software houses are doing research into this area. In our
own research, we are focusing on both the selection and tuning of scenarios, or
method outlines, and the modular construction of situational methods. This will
be elaborated in the next sub-section.

3.2. Issues in Situational Method Engineering approaches
In section one, we described and graphically depicted the process of Situational
Method Engineering. We identified the following steps: project characterisation,
selection of method fragments, assembly of the fragments, validation of the
situational method, and adaptation of the situational method. However, there are
many issues related to these activities, some of which are described in this sub-
section

1. Order of method engineering steps

The first issue concerns the order in which the method engineering steps should
be gone through. Several alternatives can be distinguished, for instance:

a. First, the project is completely characterised, after which selection of method
fragments based on the characterisation can take place;

An inventory and risk analysis of the contingencies defining the ICPS
project is made: IS adaptation, incorporation of standard software,
database conversion, low complexity, average level of experience needed,
costs less than 100'000 ECU, average response time < 1s, OS/2. After
this, a selection of method fragments supporting these specific
characteristics takes place.

b. First, the method fragments are selected, then the project is characterised.
Selected fragments and project characterisation are matched, after which
probably some adaptation of the set of selected fragments is needed.

Relying on his experience, the ABC consultant selects the method
fragments suitable for the ICPS project. After he has made his choice, he
answers a number of questions asked by “AutoPilot”. An example of such
a question is: "How many entities contains the current data model?". The
answers enable the tool to verify the choice of the consultant, and to
propose possible improvements.

2. Uni-Method-Involvement versus Multi-Method-Involvement

The number of methods from which fragments can be selected is also an
important variable in Situational Method Engineering. A distinction is made
between the Uni Method Involvement (UMI) approach and the Multi Method

23

Involvement (MMI) approach [Harmsen 93]. In the UMI-approach, fragments
from only one method can be selected, whereas in MMI, fragments from more
than one method can be chosen. The latter approach enables a better matching
between project situation and situational method, because the availability of
more, carefully chosen methods increases the number of possible project
situations to be covered. On the other hand, it makes the task of situational
method assembly heavier, since all kinds of integrity and consistency problems
between fragments of different methods can arise, see sub-section 2.3.
Commercial CAME tools, such as Andersen Consulting's Solution Configuration
Tool [Hidding 93] or Ernst & Young's Automated Methods Environment
[Navigator 93], are all UMI-based.

Currently, the method base of “AutoPilot” consists solely of fragments
from the “Pilot” method. This means that the situational method is
configured according to a UMI approach. Since “Pilot” does contain
fragments supporting IS adaptation and data base conversion, this
seems no limitation. However, when ABC wants to use “AutoPilot” for
real-time IS development, the method base should also consist of
fragments from other methods, supporting this kind of development. This
would result in an MMI approach.

3. Product-oriented selection versus Process-oriented selection

The selection of method fragments can have at least two starting points: the
products to be delivered, or the processes to be carried out. As product- and
process fragments have relationships with each other, the selection of an
instance of one type involves also the selection of instances of the other type. It
depends on the situation and the taste of the method engineer whether the
selection is product- or process-oriented. In practice, however, the selection will
be neither completely product-, nor completely process-oriented.

For part of the adaptation, ABC recognises the following products, in our
terminology: product fragments, to be delivered: a data model of the
current system, a data model of the future system, a user interface
design report and a database conversion plan. Given these products, the
activities to be carried out and the tools to be used are –for the largest
part– fixed, resulting in a situational method. If ABC had started with
the definition of the activities: “First, we build data models of the current
and the future system, then we write a data base conversion plan and
then we design the user interface”, this would have resulted in the
definition of the products and tools.

4. Degree of tool guidance

24

A high degree of tool guidance means that the CAME tool plays an active and
“triggering” role in the Situational Method Engineering process. The method
engineer provides a set of contingency factor values, after which the tool suggests
a set of appropriate fragments. This set can be assembled into a situational
method by the tool. The method engineer plays only a verifying and validating
role. When the degree of tool guidance is low, the initiative is completely with the
human, whereas the CAME tool plays only its role as a means to store, select and
assemble fragments. The method engineer picks the fragments from the method
base, he assembles them, after which he can, if he wishes, ask the tool to verify
and validate the products he produced.

“AutoPilot” guides the user in an average manner. The method engineer
can retrieve and assemble the method fragments he wishes to employ,
after which the tool can validate his choice by asking questions about the
situation and by applying consistency rules to the constructed situational
method. If the tool was more guiding, the process of selecting and
assembling method fragments would have been more automated and
would have involved more AI techniques.

5. Top-down or bottom-up method assembly

Another point of interest is the question whether situational methods should be
constructed using a method outline or by building block-by-block. The first type
we call top-down assembly, whereas the latter type is called bottom-up assembly.
If a situational method is constructed top-down, the task of selecting method
fragments is split into two sub tasks: first, a method outline is selected, then a
number of method fragments is chosen. The choice of a specific method outline
restricts the number of possible method fragments to be inserted in the
situational method, and therefore simplifies the task of method assembly.

ABC chooses to proceed top-down. First a Package Selection method
outline and an IS Adaptation method outline are chosen and combined.
Quite a lot superfluous product and process fragments are deleted, and
the resulting method is checked by “AutoPilot”. Some suggestions are
taken for granted, others not; a few fragments have to be added. After a
second consistency check, “AutoPilot” generates the project repository and
the situational method.

4. COMPUTER AIDED METHOD ENGINEERING

Since designing a method is, like information systems design, an information
creation and transformation process, Situational Method Engineering has a lot
in common with Information Systems Engineering. Similarities do not stop at the

25

computer aided support for the activities involved. Due to its complex nature,
Situational Method Engineering should always be applied in conjunction with
supportive tools. Just as the growing complexity of information systems and the
need for quality and maintainability caused the advent of Computer Aided
Systems Engineering (CASE) technology [McClure 89], the need for consistent,
effective and maintainable methods justifies Computer Aided Method
Engineering (CAME).

The main difference of CAME with respect to CASE constitutes the domain they
support. CASE applies to real-world apllication domains, CAME uses the domain
of information systems development methods. Just as CASE is often being
designated as “the automation of the automation”, CAME could be described as:
“the automation of automation methods assembly”.

In this section we describe the requirements for a CAME tool. We provide also a
CAME achitecture, with which our prototype complies.

4.1. CAME Tool requirements
An effective CAME tool should provide support for the following method
engineering activities:

• Determination and valuation of contingency factors

The tool should provide an interface that enables the method engineer to
determine contingency factor values. The contingency factors have to be
classified according to certain rules. The tool also has to recognise and to
weigh mutual dependencies between contingency factors, that is, the
constraining impact of one contingency factor upon others. For instance, the
contingency factor OS/2 affects other factors, since it requires a certain amount
of internal and external memory, having an effect on the costs.

• Storage of method fragments

 In order to be able to manipulate method fragments, they have to be available
to the CAME tool. Therefore, a method base should be provided, from which
method engineers can select the most appropriate fragments, including
method outlines. As experience accumulates and new methods arise, the
method base has to be modified from time to time. New method fragments
have to be added, or fragments have to be modified or deleted. These are the
methods administration tasks.

• Retrieval and composition of method fragments

 The method engineer should be able to select method fragments from the
method base. Having selected the fragments, manipulation of them is needed.
Facilities of this type include deleting and moving method fragments within
the method under construction.

26

 Composing a situational method consists of, among other things, matching the
project characterisation with the method fragment descriptions. A CAME tool
should therefore incorporate functionality to support this matching process, for
instance by offering views on a -limited- set of method fragments that match to
a certain extent the project characterisation.

 Situational methods and their supporting tools are integrated. Therefore, the
CASE tool to be used should be fully adaptable. Currently, such adaptable
CASE tools, designated by the term CASE shell or meta-CASE tool, are
available. Examples of such tools are RAMATIC [Bergsten 89], MetaEdit
[Smolander 91], ToolBuilder [Alderson 91] and Maestro II [Merbeth 91]. It is
of importance that the CAME tool generates output that can be used by the
meta-CASE tool.

• Validation and verification of the situational method

 The tool should not only offer support for the selection and assembly of method
fragments, but should also incorporate guide-lines to ensure that a sufficient
and complete set of fragments has been chosen and that it has been assembled
in a consistent way.

• Adaptation of the situational method

 The CAME tool should offer functionality to support this dynamic method-
adaptation. When the project is finished, the results of experiences with the
scenario should be accumulated in the method base, in order to be able to
assimilate practical experience into future situational methods.

4.2. Architecture of a CAME Tool
In order to meet the requirements we outlined in sub-section 4.1, we are
currently developing a CAME tool, called Decamerone. This CAME tool is based
on and is used in conjunction with the meta-CASE tool Maestro II [Merbeth 91].
The architecture of Decamerone is depicted in figure 4.1.

27

Figure 4.1 Architecture of a CAME tool

Arrows in this figure depict data flows, rounded rectangles depict data stores and
boxes depict Method Engineering support functionality. Method fragments,
including method outlines, are stored in the method base. Fragments are
inserted, modified, or deleted through the methods administration component.
The method assembly component is used for the selection and assembly of
fragments from the method base. It provides also an interface through which the
project situation is characterized, and it provides method consistency check
facilities. The method assembly component results are stored in a CAME-internal
ISM (Intermediate Situational Method) data base. This Intermediate Situational
Method is processed by several generators, which provide the meta-CASE tool
with the Situational Method data. These data include a project repository, a
work-breakdown structure, project planning data, a set of diagram- and text
editors, and help screens and paper manuals. The meta-CASE tool needs this
input in order to fulfil its role as an integrated CASE tool during the IS project.

28

Figure 4.2 shows the method fragment insertion screen, one of the methods
administration interface screens of the Decamerone prototype. Besides the name
of the method fragment, the methods administrator specifies a unique fragment
identifier. This is because different method fragments can have the same name.
Furthermore, the type, and the granularity level of the fragment (see section 2)
are specified, as well as its relationships with fragments already stored in the
method base. He also indicates the types of project in which the fragment can be
used. Similar screens are used to specify the fragments's contingency factor
values, and to perform other operations.

Method Base Administration (1)

Figure 4.2 Methods administration interface of Decamerone

5. CONCLUSIONS AND FURTHER RESEARCH

From the necessity of controlled flexibility in systems development organisations
we have introduced the concept of engineering of situational methods.
Configuration of methods based on proven parts of methods, the so-called method

29

fragments, allow to standardise in notations and tool support without enforcing
rigid work procedures on the whole of creative systems development. The method
configuration process, i.e. selection and assembly of method fragments, is
supported by a Computer Aided Method Engineering (CAME) tool. A prototype of
a CAME tool is developed, containing functionality for method configuration,
method administration, and generating input for the metaCASE environment.
The method base, being the central repository of method fragments in the CAME
tool, is structured according to the meta-models of process fragments and product
fragments.

Methods in paper manuals are passé. Automated methodical support, also called
on-line methods or electronic handbooks [Heym 93], allow for situational tuning
to the specific project circumstances. Furthermore, CAME tools can generate
exactly tailor-made methods and tools for each of the members of the project
team. Developers need not to be overloaded with the complete method or tool, but
can be equiped solely with support for their part of the project.

This paper on Situational Method Engineering is written in the context of the
large research program on method engineering at the University of Twente.
Various studies involving meta-modelling of methods and CASE tools are
currently being carried out. The structure and contents of the method base need
further refinement by means of formalisation and tests on all kinds of methods,
preferably from diverse sources and with different underlying paradigms.
Conventional methods, object oriented methods, method for knowledge based
systems, or for real-time systems, all candidates to be inserted into the method
base. An additional problem to tackle are the ways to fragment a method.

The CAME tool will be developed in the coming years and tested in the systems
development practise. The support for method configuration will be expanded,
taking advantage of Artificial Intelligence experiences. Empirical research into
the practice of method building and method tuning is needed to obtain more
consistency rules. Consistency rules will be formalised as complete as possible, in
order to allow for an easy incorporation into the CAME tool.

Right now, the CAME tool is based on the meta-CASE tool Maestro II. In the
future, we will provide links to other meta-CASE tools. This will have its impact
on the current architecture, which will be divided in a meta-CASE independent
and a meta-CASE dependent component. However, this not a research topic with
top priority.

30

REFERENCES

[Alderson 91] Alderson, A., Beyond today's CASE technology towards Meta-
CASE. In: Proceedings of the third European CASE Confer-
ence, London, 1991.

[Avison 88] Avison, D.E., and G. Fitzgerald, Information Systems Devel-
opment: Methodologies, Techniques and Tools, Blackwell Sci-
entific Publications, Oxford, 1988.

[Avison 90] Avison, D.E., and A.T. Wood-Harper, Multiview: an
exploration in information systems development, Blackwell
Scientific Publications, Oxford, 1990.

[Batini 92] Batini, C., S. Ceri, S. Navathe, Conceptual Database Design:
An entity-relationship approach, The Benjamin/Cummings
Publishing Company, Redwood City (CA), 1992.

[Benyon 87] Benyon, D., and Skidmore, S., Toward a Tool-Kit for the Sys-
tems Analyst. In: The Computer Journal, Vol. 30, No. 1, 1987.

[Bergsten 89] Bergsten, P., J. Bubenko, R. Dahl, M. Gustafsson, L.-Å Jo-
hansson, RAMATIC - A CASE Shell for Implementation of
Specific CASE Tools, TEMPORA T6.1 Report, SISU, Stock-
holm, 1989.

[Bots 87] Bots, P.W.G., and H.G. Sol, An environment to support prob-
lem solving. In: Decision support systems, vol. 3, no. 3, pp.
225-231, 1987.

[Brinkkemper 90] Brinkkemper, S., Formalisation of Information Systems
Modelling, Dissertation University of Nijmegen, Thesis Pub-
lishers, Amsterdam, 1990.

[Coad 90] Coad, P., and E. Yourdon, Object-Oriented Analysis, Prentice-
Hall, Englewood Cliffs, 1990.

[Euromethod 93] Euromethod Architecture, Euromethod project deliverable
Work Package 2, 1993.

[Finkelstein 92] Finkelstein, A., J. Kramer, B. Nuseibeh, Viewpoints: A
Framework for Integrating Multiple Perspectives in System
Development. In: International Journal of Software Engineer-
ing and Knowledge Engineering, Vol. 2, No. 1, pp. 31-57,
1992.

[Harmsen 93] Harmsen, F., and S. Brinkkemper, Computer Aided Method
Engineering based on Existing Meta-CASE Technology. In:
Brinkkemper, S. and F. Harmsen (Eds.), Proceedings of the

31

Fourth Workshop on The Next Generation of CASE Tools,
Paris, 1993.

[Harmsen 94] Harmsen, F., S. Brinkkemper, H. Oei, Formalisation of
Method Fragments, in preparation.

[Heym 93] Heym, M., and H. Österle, Computer-aided methodology en-
gineering. In: Information and Software Technology, vol.35,
no. 6/7, pp. 345-354, 1993.

[Hidding 93] Hidding, G.J., G.M. Freund, J.K. Joseph, Modeling Large
Processes with Task Packages. Workshop on Modeling in the
Large, AAAI Conference, Washington, D.C., 1993.

[Hong 93] Hong, S., G. van den Goor, S. Brinkkemper, A Comparison of
Object-Oriented Analysis and Design Methodologies. In:
Proceedings of the 26th Hawaiian Conference on System
Sciences (HICSS-26), IEEE Computer Science Press, 1993.

[Kumar 92] Kumar, K., and R.J. Welke, Methodology Engineering: A Pro-
posal for Situation-Specific Methodology Construction. In:
W.W. Cotterman, J.A. Senn (Eds.), Challenges and Strategies
for Research in Systems Development, Wiley, 1992.

[Lindgreen 90] Lindgreen, P. (Ed.), A Framework of Information Systems
Concepts. Interim Report of the IFIP WG8.1 Task Group
FRISCO, 1990.

[Marttiin 92] Marttiin, P., K. Lyytinen, M. Rossi, V.-P. Tahvanainen, K.
Smolander, J.-P. Tolvanen, Modeling Requirements for Fu-
ture CASE: Issues and Implementation Considerations. In:
DeGross, J.I., J.D. Becker, J.J. Elam (Eds.) Proceedings of the
13th ICIS, Dallas, 1992.

[Marttiin 93] Marttiin, P., M. Rossi, V.-P. Tahvainanen, K. Lyytinen, A
Comparative Review of CASE Shells - a preliminary frame-
work and research outcomes. In: Information and Manage-
ment, vol.25, no.1, pp 11-31, 1993.

[Maynard 39] Maynard, H.B., and G.J. Stegemerten, Operation Analysis,
McGraw-Hill, New York, 1939.

[McClure 89] McClure, C.L., CASE is Software Automation, Prentice-Hall,
Englewood Cliffs, 1989.

[Merbeth 91] Merbeth, G., Maestro II - the integrated CASE system of
Softlab (in German: Maestro II - das integrierte CASE-
System von Softlab). In: Balzert, H. (Ed.), CASE Systeme und
Werkzeuge, 3e Auflage, BI Wissenschaftsverlag, 1991.

32

[Method/1 92] Method/1® version 9.0 methodology manuals, Andersen Con-
sulting, 1992.

[Navigator 91] NAVIGATORsm system series, release 1.5, Ernst & Young,
1991.

[Navigator 93] NAVIGATORsm system series, release 2.0, Automated Meth-
ods Environment, Ernst & Young, 1993.

[Nuseibeh 92] Nuseibeh, B., and A. Finkelstein, ViewPoints: A Vehicle for
Method and Tool Integration. In: Proceedings of the Interna-
tional Workshop on CASE (CASE 92), Montreal, IEEE Com-
puter Society Press, pp. 50-60, 1992.

[Oei 92] Oei, J.L.H., L.J.G.T. van Hemmen, E.D. Falkenberg, S.
Brinkkemper, The Meta Model Hierarchy: A Framework for
Information Systems Concepts and Techniques, Technical Re-
port No. 92-17, Department of Informatics, University of
Nijmegen, 1992.

[Oei 94] Oei, J.L.H., and E.D. Falkenberg, Harmonisation of
Information System Modelling and Specification Techniques.
submitted for publication, 1994.

[Olle 88] Olle, T.W., Business Analysis and System Design Specifica-
tions for an Inventory Control and Purchasing System. In:
Olle, T.W., A.A. Verrijn-Stuart, L. Bhabuta (Eds.), Computer-
ized Assistance during the Information Systems Life Cycle,
North-Holland, 1988.

[Olle 91] Olle, T.W., J. Hagelstein, I.G. MacDonald, C. Rolland, H.G.
Sol, F.J.M. van Assche, A.A. Verrijn-Stuart, Information
Systems Methodologies - A Framework for Understanding,
2nd edition, Addison-Wesley, 1991.

[Partsch 90] Partsch, H.A, Specification and Transformation of Programs,
Springer Verlag, 1990.

[Rumbaugh 91] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design, Prentice-
Hall, Englewood Cliffs, 1991.

[Saeki 93] Saeki, M., K. Iguchi, K. Wen-Yin, M. Shinohara, A Meta-
Model for Representing Software Specification & Design
Methods. In: N. Prakash, C. Rolland, B. Pernici (Eds.), Pro-
ceedings of the IFIP WG8.1 Conference on Information Sys-
tems Development Process, Como, 1993.

[Slooten 93] Slooten, K. van, and S. Brinkkemper , A Method Engineering
Approach to Information Systems Development. In:
N. Prakash, C. Rolland, B. Pernici (Eds.), Proceedings of the

33

IFIP WG8.1 Conference on Information Systems Development
Process, Como, 1993.

[Smolander 91] Smolander, K., P. Marttiin, K. Lyytinen, V.-P. Tahvainanen,
Meta-Edit - A Flexible Graphical Environment for Methodol-
ogy Modelling. In: R. Andersen, J.A. Bubenko, A. Solvberg
(Eds.), Advanced Information Systems Engineering, Lecture
Notes in Computer Science 498, Springer, Berlin, 1991.

[Verhoef 91] Verhoef, T.F., A.H.M. ter Hofstede, G.M. Wijers, Structuring
Modelling Knowledge for CASE shells. In: R. Andersen, J.A.
Bubenko, A. Solvberg (Eds.), Advanced Information Systems
Engineering, Lecture Notes in Computer Science 498,
Springer, Berlin, 1991.

[Vessey 92] Vessey, I., S. Jarvenpaa, N. Tractinsky, Evaluation of Vendor
Products: CASE tools as Methodology Companions. In: Com-
munications of the ACM, vol. 35, no. 4, pp 90-105, 1992.

[Wijers 91] Wijers, G.M., Modelling support in information systems de-
velopment, Dissertation University of Delft, Thesis Publish-
ers, Amsterdam, 1991.

[Wirfs-Brock 90] Wirfs-Brock, R., B. Wilkerson, L. Wiener, Designing object-
oriented software, Prentice-Hall, Englewood Cliffs, 1990.

[Yourdon 89] Yourdon, E., Modern Structured Analysis, Prentice-Hall,
Englewood Cliffs, 1989.

View publication statsView publication stats

https://www.researchgate.net/publication/221584093

