5 research outputs found

    Studi Steganografi Pada Citra Digital Menggunakan Shuffled Singular Value Decomposition (SSVD)

    Get PDF
    Stegangraphy is a technique for embed secret message in original image. It has an important role in the field of information hiding for secret communication. Many research about steganography tecniques have been developed, one of them is singular value decomposition (SVD). SVD method is popular discused in many tecnique such us steganography and watermarking. In addition to SVD there is a method which can give better result than SVD on watermaring technique that is Shuffled SVD. The differences between SSVD and SVD is in shuffle process which applied before applying SVD. The popularity of SSVD in the watermarking technique made the writer intererest to propose an image steganography tecnique using shuffled singular value decomposition (SSVD). The data used are two original RGB imaage and a message RGB image. Quality measured by PSNR and Correlation Coefficient. The experimental result show that the shuffling process on the secret message caused embedded message can’t  read easyly so the secret message is more secure

    Adopt an optimal location using a genetic algorithm for audio steganography

    Get PDF
    With the development of technologies, most of the users utilizing the Internet for transmitting information from one place to another place. The transmitted data may be affected because of the intermediate user. Therefore, the steganography approach is applied for managing the secret information. Here audio steganography is utilized to maintain the secret information by hiding the image into the audio files. In this work, discrete cosine transforms, and discrete wavelet transform is applied to perform the Steganalysis process. The optimal hiding location has been identified by using the optimization technique called a genetic algorithm. The method utilizes the selection, crossover and mutation operators for selecting the best location. The chosen locations are difficult to predict by unauthorized users because the embedded location is varied from information to information. Then the efficiency of the system ensures the high PSNR, structural similarity index (SSIM), minimum mean square error value and Jaccard, which is evaluated on the audio Steganalysis dataset

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature

    Triple scheme based on image steganography to improve imperceptibility and security

    Get PDF
    A foremost priority in the information technology and communication era is achieving an effective and secure steganography scheme when considering information hiding. Commonly, the digital images are used as the cover for the steganography owing to their redundancy in the representation, making them hidden to the intruders. Nevertheless, any steganography system launched over the internet can be attacked upon recognizing the stego cover. Presently, the design and development of an effective image steganography system are facing several challenging issues including the low capacity, poor security, and imperceptibility. Towards overcoming the aforementioned issues, a new decomposition scheme was proposed for image steganography with a new approach known as a Triple Number Approach (TNA). In this study, three main stages were used to achieve objectives and overcome the issues of image steganography, beginning with image and text preparation, followed by embedding and culminating in extraction. Finally, the evaluation stage employed several evaluations in order to benchmark the results. Different contributions were presented with this study. The first contribution was a Triple Text Coding Method (TTCM), which was related to the preparation of secret messages prior to the embedding process. The second contribution was a Triple Embedding Method (TEM), which was related to the embedding process. The third contribution was related to security criteria which were based on a new partitioning of an image known as the Image Partitioning Method (IPM). The IPM proposed a random pixel selection, based on image partitioning into three phases with three iterations of the Hénon Map function. An enhanced Huffman coding algorithm was utilized to compress the secret message before TTCM process. A standard dataset from the Signal and Image Processing Institute (SIPI) containing color and grayscale images with 512 x 512 pixels were utilised in this study. Different parameters were used to test the performance of the proposed scheme based on security and imperceptibility (image quality). In image quality, four important measurements that were used are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Histogram analysis. Whereas, two security measurements that were used are Human Visual System (HVS) and Chi-square (X2) attacks. In terms of PSNR and SSIM, the Lena grayscale image obtained results were 78.09 and 1 dB, respectively. Meanwhile, the HVS and X2 attacks obtained high results when compared to the existing scheme in the literature. Based on the findings, the proposed scheme give evidence to increase capacity, imperceptibility, and security to overcome existing issues

    Bit inverting map method for improved steganography scheme

    Get PDF
    Achieving an efficient and accurate steganography scheme for hiding information is the foremost priority in the information and communication technology era. The developed scheme of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography scheme is the main issue to be addressed. This study proposes an improved Bit Inverting Map (BIM) method and a new scheme for embedding secret message into an image. This newly developed scheme is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select pixels before random embedding to select block of (64 64) pixels, followed by the Knight Tour algorithm to select sub-block of (8 8) pixels, and finally by the random pixels selection. The proposed BIM is distributed over the entire image to maintain high level of security against any kind of attack. One-bit indicator is used to decide if the secret bits are inserted directly or inversely, which enhanced the complexity of embedding process. Color and gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. Self-captured images are used to test the efficacy of the proposed BIM method. The results show good PSNR values of 72.9 and these findings verified the worthiness of the proposed BIM method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing scheme in the literature
    corecore