6,024 research outputs found

    Large deviations for some fast stochastic volatility models by viscosity methods

    Full text link
    We consider the short time behaviour of stochastic systems affected by a stochastic volatility evolving at a faster time scale. We study the asymptotics of a logarithmic functional of the process by methods of the theory of homogenisation and singular perturbations for fully nonlinear PDEs. We point out three regimes depending on how fast the volatility oscillates relative to the horizon length. We prove a large deviation principle for each regime and apply it to the asymptotics of option prices near maturity

    ES Is More Than Just a Traditional Finite-Difference Approximator

    Full text link
    An evolution strategy (ES) variant based on a simplification of a natural evolution strategy recently attracted attention because it performs surprisingly well in challenging deep reinforcement learning domains. It searches for neural network parameters by generating perturbations to the current set of parameters, checking their performance, and moving in the aggregate direction of higher reward. Because it resembles a traditional finite-difference approximation of the reward gradient, it can naturally be confused with one. However, this ES optimizes for a different gradient than just reward: It optimizes for the average reward of the entire population, thereby seeking parameters that are robust to perturbation. This difference can channel ES into distinct areas of the search space relative to gradient descent, and also consequently to networks with distinct properties. This unique robustness-seeking property, and its consequences for optimization, are demonstrated in several domains. They include humanoid locomotion, where networks from policy gradient-based reinforcement learning are significantly less robust to parameter perturbation than ES-based policies solving the same task. While the implications of such robustness and robustness-seeking remain open to further study, this work's main contribution is to highlight such differences and their potential importance

    Generalized Stochastic Gradient Learning

    Get PDF
    We study the properties of generalized stochastic gradient (GSG) learning in forwardlooking models. We examine how the conditions for stability of standard stochastic gradient (SG) learning both di1er from and are related to E-stability, which governs stability under least squares learning. SG algorithms are sensitive to units of measurement and we show that there is a transformation of variables for which E-stability governs SG stability. GSG algorithms with constant gain have a deeper justification in terms of parameter drift, robustness and risk sensitivity

    Robust Mean Square Stability of Open Quantum Stochastic Systems with Hamiltonian Perturbations in a Weyl Quantization Form

    Full text link
    This paper is concerned with open quantum systems whose dynamic variables satisfy canonical commutation relations and are governed by quantum stochastic differential equations. The latter are driven by quantum Wiener processes which represent external boson fields. The system-field coupling operators are linear functions of the system variables. The Hamiltonian consists of a nominal quadratic function of the system variables and an uncertain perturbation which is represented in a Weyl quantization form. Assuming that the nominal linear quantum system is stable, we develop sufficient conditions on the perturbation of the Hamiltonian which guarantee robust mean square stability of the perturbed system. Examples are given to illustrate these results for a class of Hamiltonian perturbations in the form of trigonometric polynomials of the system variables.Comment: 11 pages, Proceedings of the Australian Control Conference, Canberra, 17-18 November, 2014, pp. 83-8

    Relative Value Iteration for Stochastic Differential Games

    Full text link
    We study zero-sum stochastic differential games with player dynamics governed by a nondegenerate controlled diffusion process. Under the assumption of uniform stability, we establish the existence of a solution to the Isaac's equation for the ergodic game and characterize the optimal stationary strategies. The data is not assumed to be bounded, nor do we assume geometric ergodicity. Thus our results extend previous work in the literature. We also study a relative value iteration scheme that takes the form of a parabolic Isaac's equation. Under the hypothesis of geometric ergodicity we show that the relative value iteration converges to the elliptic Isaac's equation as time goes to infinity. We use these results to establish convergence of the relative value iteration for risk-sensitive control problems under an asymptotic flatness assumption

    Optimal control of multiscale systems using reduced-order models

    Get PDF
    We study optimal control of diffusions with slow and fast variables and address a question raised by practitioners: is it possible to first eliminate the fast variables before solving the optimal control problem and then use the optimal control computed from the reduced-order model to control the original, high-dimensional system? The strategy "first reduce, then optimize"--rather than "first optimize, then reduce"--is motivated by the fact that solving optimal control problems for high-dimensional multiscale systems is numerically challenging and often computationally prohibitive. We state sufficient and necessary conditions, under which the "first reduce, then control" strategy can be employed and discuss when it should be avoided. We further give numerical examples that illustrate the "first reduce, then optmize" approach and discuss possible pitfalls

    Robustifying Learnability

    Get PDF
    In recent years, the learnability of rational expectations equilibria (REE) and determinacy of economic structures have rightfully joined the usual performance criteria among the sought after goals of policy design. And while some contributions to the literature (for example Bullard and Mitra (2001) and Evans and Honkapohja (2002)) have made significant headway in establishing certain features of monetary policy rules that facilitate learning, a comprehensive treatment of policy design for learnability has yet to surface, especially for cases in which agents have potentially misspecified their learning models. This paper provides such a treatment. We argue that since even among professional economists a generally acceptable workhorse model of the economy has not been agreed upon, it is unreasonable to expect private agents to have collective rational expectations. We assume instead that agents have an approximate understanding of the workings of the economy and that their task of learning true reduced forms of the economy is subject to potentially destabilizing errors. We then ask: can a central bank set policy that accounts for learning errors but also succeeds in bounding them in a way that allows eventual learnability of the model, given policy. For different parameterizations of a given policy rule applied to a New Keynesian model, we use structured singular value analysis (from robust control) to find the largest ranges of misspecifications that can be tolerated in a learning model without compromising convergence to an REE. A parallel set of experiments seeks to determine the optimal stance (strong inflation as opposed to strong output stabilization) that allows for the greatest scope of errors in learning without leading to expectational instabilty in cases when the central bank designs both optimal and robust policy rules with commitment. We compare the features of all the rules contemplated in the paper with those that maximize economic performance in the true model, and we measure the performance cost of maximizing learnability under the various conditions mentioned here.monetary policy, learning, E-stability, model uncertainty, robustness
    corecore