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Abstract

We study the properties of generalized stochastic gradient (GSG) learning in forward-
looking models. We examine how the conditions for stability of standard stochastic
gradient (SG) learning both differ from and are related to E-stability, which governs
stability under least squares learning. SG algorithms are sensitive to units of mea-
surement and we show that there is a transformation of variables for which E-stability
governs SG stability. GSG algorithms with constant gain have a deeper justification
in terms of parameter drift, robustness and risk sensitivity.
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1 Introduction

Over the past decade or two there has been a significant amount of macroeconomic research
studying the implications of adaptive learning. This literature replaces rational expectations
with the assumption that economic agents are boundedly rational but employ statistical
forecasting techniques, which may allow the possibility of the economy finding a rational
expectations equilibrium in the long run. A large part of this literature has assumed that
economic agents used versions of recursive least squares (RLS) algorithms in estimating
the parameters required for making forecasts. Occasionally, alternatives to RLS have been
considered. The stochastic gradient (SG) algorithm has emerged as a convenient alternative
to RLS.

∗We thank Chryssi Giannitsarou for useful comments. Honkapohja gratefully acknowledges financial
support from ESRC grant RES-000-23-1152.
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Recursive least squares is simply a recursive, “on-line” implementation of classical least
squares. It requires updating both the parameter estimates and an estimate of the second
moment matrix of the regressors. The parameters are updated in a way to satisfy the
least squares orthogonality condition, and the second moment matrix weights the different
elements of the vector of observations. By contrast, the stochastic gradient algorithm (which
is also known as least mean squares) does not use information on the second moments of
the data but instead uses a fixed weighting matrix, namely the identity matrix.1 In this
paper we also study a generalized stochastic gradient rule which allows the weight to be an
arbitrary positive definite (but fixed) matrix.

In classical econometric setups least squares is known to be a consistent and asymptoti-
cally efficient estimation method and is clearly the most widely used estimation method in
practical forecasting. However, SG estimators, though inefficient, are also consistent and
are somewhat simpler to compute than RLS estimators. In fact, the main advantage of the
SG algorithm appears to be not so much its plausibility as a model of the adaptive learning
rule followed by economic agents, but rather its ease of implementation in simulations that
involve studies of global aspects of learning in relatively complicated models. For examples
of the latter, see (Bullard and Eusepi 2005) and (Evans and Honkapohja 2005). The fact
that SG learning has been found to work well in complex environments suggests that it has
certain robustness properties that are absent in RLS.

Our main goal in the current paper is to examine the properties of SG algorithms in self-
referential models. In doing so, we are led to a natural extension of the SG algorithm, which
we call generalized SG (GSG) learning. We explore several dimensions of the performance
and justification of this learning rule.

The first issue concerns the convergence conditions for SG learning. In the literature on
adaptive learning, an attraction of RLS is that its convergence properties are relatively easy
to compute. In contrast to the classical statistical framework, macroeconomic models with
learning are self-referential, i.e. the evolution of the endogenous variables is influenced by
the learning process itself. This has the consequence that it is not a foregone conclusion that
estimators will be consistent, as the feedback from the learning process to the evolution of
the state variables may lead the overall system to fail to converge to an equilibrium.

Under RLS it can be shown that a rational expectations equilibrium (REE) is locally sta-
ble under learning if what are known as expectational stability (E-stability) conditions hold.
A question that has emerged is how general is the class of algorithms for which convergence
is governed by E-stability. For example, it is well-known that some mild generalizations of
RLS that weight different data points unequally are covered by the E-stability principle.
Some recent papers have examined the relationship between E-stability and convergence
of SG learning. In a simple class of models E-stability provides exactly the conditions for
convergence of SG learning. However, the literature has shown that E-stability does not al-
ways imply convergence of SG learning; for an economic example see (Giannitsarou 2005).2

1For a brief introduction to SG learning and further references, see Section 3.5 of (Evans and Honkapohja
2001).

2(Sargent and Williams 2005) show that E-stability also need not imply convergence when agents learn
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Further references are given in Section 2.4.
These points raise a number of questions. First, what are the conditions for convergence

of SG learning for a general class of linear models? It turns out that, in contrast to RLS, the
stability properties of SG learning in general depend on the moment matrix of the regressors.
Are there easily stated conditions under which convergence of SG learning is independent of
this moment matrix? In particular, when does E-stability govern convergence of SG learning
in forward-looking models?

Secondly, the issue of parameter drift has recently received increasing attention. (Sargent
and Williams 2005) examine a model in which parameter drift takes the form of a random
walk using an approximate Kalman filter, which is the Bayesian estimator. For particular
priors on the parameter drift, this is equivalent to “constant gain” recursive least squares.
In the current paper we show that for any given prior, an appropriate constant gain GSG
algorithm approximates the Bayesian learning rule. This is a more compelling justification
for GSG rules than those based on computational cost and numerical performance.

Thirdly, we also show that constant gain GSG learning has a dramatically different
justification as a robust learning rule. If agents are uncertain about the true data generating
process, they may want to employ a learning rule that performs well across a number of
alternative models. GSG rules have precisely this property, as they are robust optimal
predictors. Finally, we show that the constant gain GSG rule is optimal if agents are “risk-
sensitive,” having greater risk aversion of a particular form: while least squares minimizes the
expected sum of squared errors, the GSG rule minimizes the expected exponential of the sum
of squared errors. Connections between robustness and risk sensitivity are well-established
in the control theory literature (dating from (Jacobson 1973) and (Whittle 1990)), and they
emerge again here.

This paper is structured as follows. After formally introducing the economic model and
the GSG algorithm, Section 2 is devoted to the relationships between E-stability and the
convergence conditions for SG learning. In particular, we present a strengthening of the
E-stability condition that is sufficient to guarantee stability of SG learning in all cases. We
also present an economic example that illustrates the conditions. In Section 3 we raise a
disadvantage of SG estimators. One of the less appreciated advantages of RLS is that it
is unit free, i.e. invariant to changes in measurement units. In contrast, SG estimators
fail to possess this natural property. This provides one motivation for considering the more
general class of GSG estimators (one of which is asymptotically equivalent to least squares).
Section 4 turns to the further justification of GSG estimators in terms of parameter drift
and robustness in the face of unknown model uncertainty. Some simple simulation exercises
illustrate the robustness of SG learning. Section 5 concludes.

via a Kalman filter.
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2 Generalized SG Learning

2.1 The Economic Model

We use the basic multivariate linear forward-looking model

yt = α+AE∗
t yt+1 +Bwt + ηt, (1)

wt = Fwt−1 + et,

where yt is n× 1, the k × 1 observed exogenous variables wt are assumed to follow a known
vector autoregression (VAR), and the unobserved shock ηt is white noise. The innovation et
has zero mean and covariance matrix Σe. F is assumed to be invertible with roots inside the
unit circle and the asymptotic covariance matrix limt→∞Ewtw

′
t = Mw is positive definite

and solves the Lyapunov equation:

Mw = FMwF
′ +Σe.

E∗
t yt+1 denotes the expectations held by private agents, which under learning can differ from

rational expectations (RE). This model has a unique RE solution of the form yt = ā+ b̄wt.
This solution is often called the “fundamentals” or minimal state variable (MSV) solution.3

Under learning agents have a “perceived law of motion” (PLM) of the form yt = a+ bwt
and estimate the parameters a and b econometrically. Thus at time t agents have the
estimated PLM:

E∗
t yt = at + btwt,

which implies the forecast function

E∗
t yt+1 = at + btFwt.

To simplify the analysis we have assumed that F is known, but it would be straightforward
to allow F also to be estimated, and our results would be in essence unaffected. Any given
PLM induces an “actual law of motion” (ALM) that gives the temporary equilibrium value
of yt. This is obtained by substituting E∗

t yt+1 into (1). For PLM estimates at, bt we obtain

yt = α+Aat + (AbtF +B)wt + ηt.

Introducing the notation z′t = (1′, w′t) for the state variables, where 1 refers to a column
vector of 1s, and the notation ϕ′t = (at, bt) for the parameters, we can summarize the PLM
at t as yt = ϕ′tzt and the ALM at t as yt = T (ϕt)

′zt + ηt, where

T (ϕ)′ = (α+Aa,AbF +B). (2)

The MSV RE solution is given by the fixed point of T , i.e. ϕ̄′ = (ā, b̄), where ā = (I−A)−1α
and b̄ = Ab̄F +B.

3For simplicity, our main points are made within the purely forward-looking model (1). Appendix C shows
how to extend the analysis of convergence of GSG learning to models with lagged endogenous variables.
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2.2 GSG Algorithm

We begin by introducing the Generalized SG algorithm for estimating and updating at, bt.
This is given by:

ϕt = ϕt−1 + γtΓzt−1(yt−1 − ϕ′t−1zt−1)
′, (3)

where in the decreasing gain case γt → 0 as t→∞ and in the constant gain case γt = γ > 0
for all t. The usual assumption in the decreasing gain case is that γt = 1/t. Here Γ is a
positive definite weighting matrix. The standard SG algorithm is the special case Γ = I.
It is also worth noting that setting Γ = M−1

z , where Mz = limt→∞Eztz
′
t = diag(I,Mw)

delivers an algorithm that is asymptotically equivalent to RLS, as discussed below. Here
“diag” denotes a block diagonal matrix.

We focus in this section on the decreasing gain case in which convergence to RE is possible
over time. Later, in Section 4 we examine constant gain versions. There we note that the
stability conditions are the same, but the sense of convergence differs. Substituting in the
ALM we can write:

ϕt = ϕt−1 + γtΓzt−1
[
z′t−1(T (ϕt−1)− ϕt−1) + η′t

]
, (4)

which is formally a stochastic approximation or stochastic recursive algorithm (SRA). The
general techniques for analyzing SRA’s yield conditions for convergence of ϕt to a fixed value
ϕ̄ as t→∞ under GSG learning. Convergence of ϕt depends, in particular, on the properties
of the mapping T (ϕ). A well-known method for obtaining the convergence conditions is based
on a study of stability of an ordinary differential equation that is associated with the SRA.4

For the system (4) it is straightforward to verify that ϕt → ϕ̄ globally with probability
one if ϕ̄ is a locally stable equilibrium of the associated differential equation

dϕ

dτ
= ΓMz(T (ϕ)− ϕ), (5)

where τ is notional or virtual time.5 Since both Γ and Mz are positive definite, their product
is nonsingular, which implies that the only equilibrium of the differential equation is the REE
ϕ̄. Standard results for SRAs also imply that ϕ̄ is the only possible point of convergence.

Local stability conditions for ϕ(τ) → ϕ̄ are given by the linearization of the matrix
differential equation (5), giving

d vecϕ′

dτ
= (ΓMz ⊗ I)(DT ′ − I) vecϕ′,

where “vec” refers to the vectorization of a matrix andDT ′ is the n(k+1)×n(k+1) Jacobian
matrix, of the vectorized T ′ map given in (2), evaluated at the fixed point ϕ̄.6 Local stability

4See (Evans and Honkapohja 2001), especially Chapters 6 and 7 for a discussion of SRAs and the study
of their convergence properties.

5Global convergence applies because equation (9) is linear here. Thus ϕ̄ is in fact globally asymptotically
stable if it is locally so.

6For an m × n matrix X, vecX is the mn × 1 vector that stacks in order the columns of X. For the
vectorization and matrix differential results see the summary in Section 5.7 of (Evans and Honkapohja 2001).
For a full discussion, see (Magnus and Neudecker 1988).
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of the differential equation requires that all eigenvalues of

(ΓMz ⊗ I)(DT ′ − I) (6)

have negative real parts.
We now turn to the classic SG and RLS algorithms and examine the connections between

their respective convergence conditions. Later we will come back to analysis of the GSG
algorithm.

2.3 Classic SG and RLS Algorithms

The classic SG algorithm sets Γ = I. The associated differential equation (5) then takes the
explicit form:

dϕ′

dτ
=
(
α+ (A− I)a (AbF − b+B)Mw

)
(7)

since

Mz =

(
I 0
0 Mw

)
.

The stability conditions for ϕ thus imply conditions for (a, b). For the a component
we get the stability condition that the eigenvalues of A − I must have negative real parts.
Vectorizing the equation for matrix b yields

dvec(b)

dτ
= (Mw ⊗ I)vec(AbF − b+B) =

(Mw ⊗ I)[((F ′ ⊗A)− I)vec(b) + vec(B)].

The relevant coefficient matrix is (Mw ⊗ I)((F ′ ⊗ A) − I) and local stability requires that
all of its eigenvalues must have negative real parts. In what follows we say that a matrix is
stable if all of its eigenvalues have negative real parts.

SG-stability conditions: A− I and (Mw ⊗ I)((F ′ ⊗A)− I) are stable matrices.

Note that the condition thatA−I is stable is equivalent to the condition that every eigenvalue
of A has real part less than unity.

In the literature on adaptive learning, the RLS algorithm has been more widely used and
we briefly review its main features. The RLS algorithm is usually written in recursive form
as:

ϕt = ϕt−1 + γtR
−1
t zt−1(yt−1 − b′t−1zt−1)

′ (8)

Rt = Rt−1 + γt(zt−1z
′
t−1 −Rt−1),

where again the standard decreasing gain assumption is that γt = 1/t. The associated
differential equation takes the form dϕ/dτ = S−1Mz[T (ϕ)−ϕ] and dS/dτ = Mz − S, where
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a timing change St−1 = Rt must be made to (8) before the formal analysis.7 Clearly, local
convergence of RLS learning requires that the RE solution ϕ̄ (or ϕ̄′) be locally asymptotically
stable under the differential equation:

d

dτ
ϕ′ = T (ϕ)′ − ϕ′. (9)

Equation (9) has been widely studied in the literature. ϕ̄ is said to be expectationally stable
(E-stable) if ϕ̄ is a locally asymptotically stable fixed point of (9). The conditions for E-
stability are:

E-stability conditions: A− I and F ′ ⊗A− I are stable matrices.

We remark that the eigenvalues of F ′⊗A−I are fkλi−1, where fk and λi are eigenvalues
of F and A, respectively. This follows since the eigenvalues of the Kronecker product of two
matrices consist of the products of the eigenvalues of each matrix.

Note that in contrast to SG-stability, the E-stability conditions do not depend on Mw.
Furthermore, using the preceding remark, with a strengthening of the condition on A it is
possible to obtain conditions that are also independent of F . Specifically, if every eigenvalue
of A has modulus less than one then E-stability holds for all permissible F .

2.4 Relationships between E-stability and SG-stability

The relationship between SG and E-stability in specific models has been discussed in the
previous literature. The two conditions are identical in multivariate cobweb-type models in
which past expectations of current variables, but not expectations of future variables, ap-
pear in the structural model; see (Evans and Honkapohja 1998). In models with dependence
on expectations of future values of the endogenous variables, an exact correspondence be-
tween E-stability and convergence of SG learning no longer holds. This was conjectured by
(Barucci and Landi 1997), though they did not give any explicit examples. (Heinemann 2000)
suggested an example, though it was in the context of a non-fundamental REE. Recently,
(Giannitsarou 2005) has provided an economic example with lagged endogenous variables in
which E-stability of the fundamental REE does not imply convergence of SG learning.

Thus, SG- and E-stability conditions are not always the same. In fact, for our forward-
looking model (1), simple examples show that neither implies the other. See Appendix A
for numerical examples showing that the phenomenon can arise in purely forward-looking
models with a single endogenous variable and two exogenous variables. These are the simplest
examples that can be provided, since with a single exogenous variable it is immediate that
E-stability and SG-stability are equivalent.

7See pp. 232-235 of (Evans and Honkapohja 2001) for more details.
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2.4.1 Stability Conditions

We next consider various cases under which E-stability implies SG-stability. The first results
give additional conditions that are sufficient for SG-stability for all admissible Mw. We first
define two stability concepts.8

Definition 1 A matrix C is H-stable if all the eigenvalues of HC have negative real parts
whenever H is a positive definite matrix.

Definition 2 A matrix C is D-stable if all the eigenvalues of DC have negative real parts
whenever D is a positive diagonal matrix.

The definition makes clear that a sufficient condition for convergence of SG learning is:

Proposition 3 Assume E-stability and assume further that the matrix (F ′ ⊗ A) − I is H-
stable. Then SG-stability holds for all admissible Mw.

The property of H-stability is quite restrictive. A sufficient condition for H-stability of
a matrix C is that C is negative quasi-definite, i.e. that C + C ′ is negative definite, i.e.
has negative eigenvalues.9 Note that if Mw is diagonal, then the set of sufficient conditions
is that (i) A − I is a stable matrix and (ii) (F ′ ⊗ A) − I is D-stable. There exist various
necessary or sufficient condition for D-stability, but a full characterization is apparently not
available (this is in contrast to H-stability).10

Corollary 4 Assume E-stability. If in addition F is symmetric with positive eigenvalues
and A− I is negative quasi-definite then SG-stability holds for all admissible Mw.

Proofs of this and other results are in Appendix B. The conditions in the Corollary can be
convenient to apply, but they are much stronger than E-stability of the MSV REE.

The next case of uncorrelated exogenous variables arises in applications, as illustrated
below:

Proposition 5 When F and Σe are diagonal, E-stability and SG-stability are equivalent.

There are some further special cases in which E-stability guarantees convergence of SG
learning. For models with a scalar endogenous variable we have:

Proposition 6 Assume that n = 1 with |A| < 1. If the largest singular value of F is not
greater than one, then E-stability implies SG-stability.

We recall that the largest singular value of F is equal to the largest eigenvalue of FF ′.
8(Honkapohja and Mitra 2005) show that H-stability provides sufficient stability conditions when there

is structural and learning heterogeneity.
9See, for example, (Arrow and McManus 1958). They refer to H-stability as S-stability. Necessary and

sufficient conditions for H-stability are given in (Carlson 1968).
10See (Arrow 1974) and (Johnson 1974).
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2.4.2 Economic Example

As an example we consider the bivariate New Keynesian model of monetary policy, which
is widely used in current discussions of monetary policy.11 The key equations of the model
take the form:

xt = cx +E∗
t xt+1 − σ−1(rt − E∗

t πt+1) + gt, (10)

πt = cπ + κxt + BE
∗
t πt+1 + ut. (11)

Here xt is the output gap, πt is the inflation rate and rt is the nominal interest rate. The
parameters σ, κ > 0 and 0 < B < 1. cx and cπ are intercepts, which are from the log-
linearization of the exact model. w′t = (gt, ut) consists of observable shocks to the output
gap and inflation, respectively. The stochastic process for wt has the form given in (1). The
first equation is the IS curve that comes from the Euler equation for consumer optimality
and the second equation is the forward-looking Phillips curve based on Calvo price stickiness.

The model is completed by specification of an interest rate rule. A wide variety of different
rules have been studied in the literature.12 One possibility is the standard Taylor rule:

rt = cr + φππt + φxxt, (12)

where cr denotes an intercept. The parameters satisfy φπ, φx > 0. (Bullard and Mitra 2002)
show that the E-stability condition under the standard Taylor rule is

κ(φπ − 1) + (1−B)φx > 0. (13)

Alternatively, (Evans and Honkapohja 2003b) consider optimal discretionary policy and show
that the expectations-based interest rate rule

rt = cr +

(
1 +

σκB

α+ κ2

)
E∗
t πt+1 + σE∗

t xt+1 + σgt +
σκ

α+ κ2
ut, (14)

where α is the weight on output gap in a quadratic loss function of the policy-maker and cr
is an intercept, always leads to E-stability of the REE. If the two shocks gt and ut in model
(10)-(11) are uncorrelated, Proposition 5 applies.

Proposition 7 Assume that gt and ut are independent stationary AR(1) processes.
(i) Under the Taylor rule (12) the REE is SG-stable if condition (13) holds, and
(ii) The REE is SG-stable when optimal discretionary policy employs the expectations-based
rule (14).

We next consider SG-stability further under more general assumptions about the shocks
gt and ut. For brevity, we restrict attention to the case where the policy-maker employs the

11See e.g. (Clarida, Gali, and Gertler 1999), (Svensson 2003), and (Woodford 2003) for details and analysis.
12The issue of stability under learning has been examined by (Bullard and Mitra 2002) and (Evans and

Honkapohja 2003b) among others. (Evans and Honkapohja 2003a) review the literature.
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Taylor rule (12). Introducing the notation yt = (xt, πt)
′, equations (10), (11) and (12) can

be combined to yield the bivariate system of the form (1) with:

A =
1

σ + φx + κφπ

(
σ 1− βφπ
κσ κ+ β(σ + φx)

)
.

We omit the explicit form of B as it does not affect the stability conditions.
We give numerical examples of the above results using the calibration of the model due

to (Rotemberg and Woodford 1997) and widely employed in (Woodford 2003).

Calibration: β = 0.99, σ = 0.157, κ = 0.024.

Suppose first that the policy parameters take on values φπ = 1.05 and φx = 0.2. The E-
stability conditions on A− I hold since both eigenvalues of A− I are in the interval (−1, 0).
Furthermore, A − I is negative quasi-definite as the eigenvalues of (A − I) + (A − I)′ are
−1.186 and −0.0174. Assuming that the coefficient matrix F of the vector of shocks in (1)
is symmetric with positive eigenvalues, the sufficient conditions given in Corollary 4 are met
and therefore SG-learning is convergent under the specified policy parameter values.

As a second numerical example, we postulate φπ = 1.1 and φx = 0.1. E-stability on A−I
continues to hold, as the eigenvalues of A− I are in the interval (−1, 0), but A − I fails to
be negative quasi-definite since the eigenvalues of (A− I) + (A− I)′ are −0.987 and 0.0599.
However, consider the following specification of the exogenous shocks:

F =

(
0.99 0
0 0.98

)
, Σe =

(
0.1 0.05
0.05 0.049

)
.

Directly checking the SG stability conditions, we find that the eigenvalues of (Mw⊗I)((F ′⊗
A)− I) are −2.505, −0.268, −0.218, and −0.0273. Thus SG learning is convergent for this
exogenous process even though the sufficient condition of Corollary 4 fails.

These numerical examples illustrate both the applicability and limitations of the preced-
ing stability conditions.

3 SG, RLS and Scaling Invariance

3.1 Invariance to Scaling

SG algorithms suffer from a disadvantage relative to RLS, which has not received attention.
The SG algorithm is not scale invariant, and thus the resulting estimates are affected by the
choice of units. This is demonstrated as follows.

For simplicity, we consider a univariate case. Suppose we are estimating the regression
model:

yt = β′zt + ηt

by least squares, where β and zt are p× 1 column vectors. Our discussion here will initially
be in terms of the standard (non-self-referential) regression model, since the point holds

10



generally, but it also applies to the model (1) with learning. The RLS estimate using data
through t−1 is given by (8). Suppose we now change units of the regressors so that z̃t = Dzt,
where D = diag(k1, . . . , kp). Here diag denotes a diagonal matrix and we assume ki > 0.
Then:

yt = β̃
′
z̃t + ηt,

where β̃ = D−1β. Let ϕ̃t be the RLS estimate of β̃ based on a regression of yt on z̃t. Then
RLS is scale invariant in the sense that:

ϕ̃t = D−1ϕt.

To see this, pre-multiply the RLS equation for ϕt byD−1 and for the Rt equation, premultiply
by D and postmultiply by D′ = D. Defining R̃t = DRtD

′ we get:

ϕ̃t = ϕ̃t−1 + γtR̃
−1
t z̃t−1(yt−1 − ϕ̃′t−1z̃t−1)

R̃t = R̃t−1 + γt(z̃t−1z̃
′
t−1 − R̃t−1).

But this is exactly RLS applied to a regression of yt on z̃t.
In contrast, SG estimation is not scale invariant. The SG algorithm for a regression of yt

on zt is:
ϕt = ϕt−1 + γtzt−1(yt−1 − ϕ′t−1zt−1).

Multiplying through by D−1 we get that ϕ̃t = D−1ϕt satisfies:

ϕ̃t = ϕ̃t−1 + γtD
−2z̃t−1(yt−1 − ϕ̃′t−1z̃t−1). (15)

But SG estimation based on a regression of yt on z̃t is instead:

ϕ̂t = ϕ̂t−1 + γtz̃t−1(yt−1 − ϕ̂′t−1z̃t−1),

and clearly ϕ̃t 	= ϕ̂t.
Note that the same argument applies to transformations of variable z̃t = Dzt for D

positive definite: RLS is invariant to such transformations while SG is not.

3.2 The Forward Expectations Model and the Cholesky Decom-

position

Return now to the multivariate forward looking model (1) with SG learning. Consider a
change of variables based on the Cholesky decomposition:

Mw = QQ′.

This is always possible for a positive definite matrix, resulting in a matrix Q which is trian-
gular and nonsingular.13 Letting L = Q−1 we have

LMwL
′ = I.

13For the Cholesky decomposition see, e.g., (Hamilton 1994) pp. 91-2.

11



Transforming independent variables to

w̃t = Lwt,

the RE solution becomes yt = ā+ b̂w̃t where b̂ = b̄L−1.
Under SG learning with the transformed independent variables w̃t the PLM becomes

yt = a+ b̃w̃t + ηt, where

w̃t = F̃ w̃t−1 + ẽt, with F̃ = LFL−1 and ẽt = Let.

Note that
Ew̃tw̃

′
t = I.

Thus we have transformed the independent explanatory variables to orthogonal variables
with unit variances. Clearly w̃t has the same information content as wt, and thus they
are equally good for forecasting. Furthermore, note that F̃ has the same eigenvalues as F
because F and F̃ are similar matrices.

The SG-stability conditions for the transformed specification are that A− I and (Mw̃ ⊗
I)((F̃ ′⊗A)− I) are stable matrices. But Mw̃⊗ I = I and hence the SG-stability conditions
are that A− I and F̃ ′⊗A− I are stable matrices. Since F̃ and F have the same eigenvalues
it follows that the SG-stability conditions of the transformed model reduce precisely to the
E-stability conditions. We have therefore shown:

Proposition 8 There exists a transformation of variables w̃t = Lwt, with L positive definite,
under which SG-stability is equivalent to E-stability.

The result indicates that for this model any deviation of the stability condition for SG
learning from E-stability is simply a reflection of how the independent variables are measured
and the sensitivity of SG estimation to scaling. We remark that with the model extended to
include lagged endogenous variables, this result continues to hold, but the matrix L becomes
a function of the second moment matrix of the equilibrium joint process (wt, yt−1).

14

3.3 GSG Algorithms and Scaling

The preceding discussion suggests considering a more general class of SG-type algorithms.
Note that a change of measurement units for zt in the standard SG algorithm led to (15),
which is a special case of the general GSG algorithm (3). More generally, a change of
measurements of zt in a generalized SG algorithm will yield another member of this class of
algorithms. For example, as previously noted, choosing Γ = M−1

z leads to an algorithmwhich
is asymptotically approximately the same as the RLS algorithm: the estimated moment
matrix Rt of RLS is being replaced by its limiting value Mz.

14In a real-time learning rule with lagged endogenous variables, agents could update the Cholesky trans-
formation each period as part of their recursive estimation.
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In the context of the forward-looking model (1) the condition for convergence to the RE
solution of generalized SG learning is that the eigenvalues of the matrix (6) have negative
real parts. Equivalently, the stability condition is that

(ΓMz ⊗ I)

(
I ⊗A− I 0

0 F ′ ⊗A− I

)
(16)

have negative real parts.
In the case of Γ = M−1

z the condition becomes equivalent to E-stability of the RE
solution. More generally, the analogues of the results on the connections between E-stability
and SG-stability given in Section 2 hold provided Γ and Mz commute.

15 In particular if the
independent variables zt are transformed, as in the previous section, so that Mz = I and
F is replaced by F̃ , then the analogues of the Section 2 results hold for the generalized SG
algorithm provided Γ takes the block diagonal form diag(I, Γ̂) where Γ̂ is k × k.

The formulation of the class of generalized SG algorithms raises the question of the
appropriate choice of Γ. We now turn to this issue.

4 GSG Learning with Constant Gain

As discussed in the introduction, most studies on adaptive learning in economics have con-
sidered the RLS learning rule, which has a well-known statistical motivation. This learning
rule minimizes the sum of squared residuals and is a maximum likelihood estimator when
the shocks are normally distributed and the model is correctly specified. Some recent studies
have also focused on a so-called constant gain version of recursive least squares, in which the
gain sequence γt is taken to be a small constant γ > 0.16 This rule can be derived by mini-
mizing the discounted sum of squared residuals, with the discount factor 1−γ. As discussed
below, this rule is also closely connected to the Kalman filter when the true coefficients follow
a random walk, and thus it has an approximate Bayesian interpretation.

As also noted in the Introduction, in the applied literature constant gain versions of SG
learning are also in use. As mentioned above, SG requires no matrix inversion and hence
has lower computational cost and deals better with singularities or near-singularities. In this
section we provide more formal arguments justifying constant gain GSG rules when agents
allow for parameter drift and use Bayesian updating. The gain matrix Γ is then tied to the
particular form of the parameter drift.

We also show that constant gain GSG learning has a dramatically different justification
as a robust optimal learning rule. In particular, it provides good guaranteed estimation

15The eigenvalues of ΓMw are positive and real, but ΓMw need not in general be symmetric.
16For constant gain learning the basic references are (Evans and Honkapohja 1993), (Sargent 1999),

Chapter 14 of (Evans and Honkapohja 2001), (Williams 2001), and (Cho, Williams, and Sargent 2002).
Constant gain rules are increasingly used in applied work, for example see (Bichi and Marimon 2001),
(Bullard and Cho 2005), (Bullard and Duffy 2004), (Bullard and Eusepi 2005), (Cho and Kasa 2002),
(Evans and Honkapohja 2005), (Kasa 2004), (Marcet and Nicolini 2003), (McGough 2005), (Orphanides and
Williams 2005a) and (Orphanides and Williams 2005b).
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performance in misspecified models. Moreover, the GSG rule is also optimal if agents are
“risk-sensitive,” having greater risk aversion of a particular form: the GSG rule minimizes the
expected exponential of the sum of squared errors. We then turn to some simple simulation
exercises which document the robustness of SG in practice.

4.1 Bayesian Interpretation of GSG

We follow (Sargent and Williams 2005), who consider Kalman filter estimation when para-
meter drift is modeled according to a random walk hypermodel. With a specific prior on
the covariance matrix for the parameter drift, it is possible to obtain an algorithm closely
related to constant gain RLS estimation. We show here that an alternative prior on the form
of parameter drift leads to a constant gain GSG algorithm.

4.1.1 Derivation of GSG

In particular, we suppose that an agent believes that the data are generated by the drifting
coefficients model:

yt = β′t−1zt + ηt (17)

βt = βt−1 + Λt (18)

where η and Λ are viewed as mean zero Gaussian shocks with Eη2t = σ2 and cov(Λt) =
V << σ2I. Again, our initial discussion is presented in terms of a standard time-varying
parameter regression model, but it is also applicable to the self-referential model.

In this section we assume that yt is a scalar. This is merely for notational simplicity and
does not affect the analysis. The agent’s estimator is ϕt ≡ β̂t|t−1, the optimal estimate of
βt conditional on information up to date t − 1. It is well known that the (Bayes) optimal
estimates in this linear model are provided by the Kalman filter. The Kalman filtering
equations are:

ϕt+1 = ϕt +
Pt

1 + z′tPtzt
zt(yt − ϕ′tzt) (19)

Pt+1 = Pt −
Ptztz

′
tPt

1 + z′tPtzt
+ σ−2V. (20)

Here cov(ϕt − βt) ≡ σ2Pt.
(Benveniste, Metivier, and Priouret 1990) note that for large t (20) is well approximated

by:
Pt+1 = Pt − PtMzPt + σ−2V,

where Mz = Eztz
′
t.
17 Using this approximation (and assuming 1/(1 + z′tPtzt) ≈ 1), the

17We note that in the model with lagged endogenous variables, considered in Appendix C,M would depend
on b in equations (22) and (23).
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Kalman filter equations simplify to:

ϕt+1 = ϕt + Ptzt(yt − ϕ′tzt) (21)

Pt+1 = Pt − PtMzPt + σ−2V. (22)

Furthermore, we have:

Lemma 9 Under (22), Pt locally converges to the unique positive definite matrix P that
solves the equation:

PMzP = σ−2V. (23)

The prior belief V on the form of the parameter drift influences the learning rule, as it
influences the speed and direction along which parameters should be updated. In particular,
suppose we normalize V by writing:

V = γ2σ2Ω,

where γ controls the overall speed of the parameter drift and Ω specifies the direction of the
drift (e.g. we might normalize by setting det(Ω) = 1). Since the Pt recursion (22) converges,
the limit P satisfies:

PMzP = γ2Ω or (γ−1P )Mz(γ
−1P ) = Ω.

Therefore, letting Γ = γ−1P we have:

ΓMzΓ = Ω = γ−2σ−2V, (24)

and asymptotically the parameter estimates satisfy:

ϕt+1 = ϕt + γΓzt(yt − ϕ′tzt), (25)

which is the constant gain GSG algorithm. Note that (25) has the same asymptotic behavior
as (19)-(20) under the assumed form of V , since Pt converges to γΓ, although the transient
responses from arbitrary initial conditions may differ.

Thus the choice of the gain matrix Γ in the GSG rule is closely tied to the prior V on the
parameter drift. (Sargent and Williams 2005) apply results from (Benveniste, Metivier, and
Priouret 1990) to show that if V = γ2σ2M−1

z , then the Kalman filter is closely related to a
constant gain RLS algorithm, as Γ = M−1

z .18 Alternatively, suppose that instead of being
proportional to the ratio of the observation noise variance to the covariance matrix of the
regressors (Mz), the parameter innovation covariance matrix is proportional to the product
of the two: V = γ2σ2Mz. In this case Γ = I and the classic SG rule results. More generally,
the prior on V will lead to a particular choice of the optimal matrix Γ in the GSG rule.

18The two rules have the same limits, but the transient phases differ. In the application of (Sargent and
Williams 2005), the Kalman filter converges faster.
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4.1.2 Convergence of Bayesian Learning

Returning to the economic model (1), it follows that if agents are updating their estimates
according to the approximate Bayesian learning rule (21)-(22) then for small γ local stability
is determined by (16). The convergence conditions for corresponding decreasing gain algo-
rithms carry over to the versions with small constant gain, though convergence is now weak
convergence to a stochastic process near the REE, as discussed e.g. in Chapters 7 and 14
of (Evans and Honkapohja 2001) and (Cho, Williams, and Sargent 2002). We thus have the
following result.

Proposition 10 (i) The REE ϕ̄ is locally stable for sufficiently small γ > 0 under the
approximate Bayesian learning rule (21)-(22) if (16), with Γ defined in (24), is a stable
matrix.
(ii) The approximate Bayesian learning rule (21)-(22) is invariant to a change of variables
to z̃t = Dzt for any positive definite matrix D.

The invariance of Bayesian learning to a transformation of variables also allows us to make
use of some of the stability results from Section 2.

Recalling the results of Section 2.4, one might ask whether there are restrictions on
the economic model that guarantee local stability of Bayesian learning for all priors on
the parameter drift that are sufficiently small. Combining the idea of Proposition 3 with
Proposition 10 we obtain the following result.

Proposition 11 Let LMwL
′ = I and let F̃ = LFL−1. If

(
I ⊗A− I 0

0 F̃ ′ ⊗A− I

)
(26)

is H-stable then under the approximate Bayesian learning rule (21)-(22), the REE ϕ̄ is locally
stable for all priors V on the parameter drift, where V is sufficiently small.

Note that Proposition 11 gives a condition for local stability, for all sufficiently small
priors V , that holds regardless of how the variables wt are measured. Finally, we remark
that the condition given is a strengthening of E-stability, since the latter is equivalent to
stability of the matrix (26).

4.2 Constant Gain GSG Learning and Robustness

In the previous section, we showed that the GSG rule is an (approximate) optimal predictor
for a particular model of parameter variation. However, the form of parameter variation is
quite particular, and its appropriateness in any given application is an open issue. In this
section, we provide a motivation that is in some ways more general in that it encompasses a
range of different model specifications. More particularly, if agents do not know the correct
specification of the model that they estimate, then they may want to choose a rule which
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performs well across a range of alternatives. Here we show that the GSG rule is such a robust
optimal prediction rule. Our results here follow (Hassibi, Sayed, and Kailath 1996). Robust
control methods have recently been applied to a range of economic problems (see (Hansen
and Sargent 2004) for an overview), and it is interesting to see that the SG rule has a robust
interpretation.

In particular, we suppose that agents believe now that the true coefficients are constant
over time, but they are uncertain about the data generating process. We represent this by
a variation on (17)-(18) which now takes the form:

yt = β′t−1zt + ηt (27)

βt = βt−1, β0 = β.

But now, instead of the ηt shocks having a Gaussian distribution, agents treat ηt as an ap-
proximation error without a specified probability distribution. The ηt shocks are introduced
as a means of capturing the possible misspecification of the model, and they may be both
autocorrelated and correlated with the state zt.

This set-up is particularly interesting in the context of the self-referential model with
learning, since under robust estimation, agents explicitly allow for possible misspecifica-
tion. This contrasts, for example, with standard least-squares learning formulations in
which agents ignore a transitory misspecification. There agents assume that the true re-
gression parameters are constant over time, while in reality, under learning, the parameters
are time-varying, though they converge over time to the (constant) REE values.

The key assumption in (27) is that agents do not have a (unique) prior probability
distribution over these shocks, and so cannot form expectations over them. Agents choose a
sequence of predictors ϕt to minimize the prediction errors:

et = β′zt − ϕ′t−1zt, (28)

but they acknowledge the potential misspecification error. In particular, agents treat (27)
with ηt ≡ 0 as a benchmark model, but consider a set of perturbations in a neighborhood
of this model. As they cannot evaluate the likelihood of potential perturbations, they guard
against the worst case in the set of possibilities.

In particular, instead of minimizing the expected squared errors as in the Kalman filter
case, they now solve a minimax problem. At date 0 agents have an initial estimate ϕ−1
of the true value β, with prior precision (γΓ)−1, where Γ is a symmetric, positive definite,
nonsingular matrix and γ > 0. (Our use of the same notation as above is not coincidental.)
Then the agent’s problem is:

min
{ϕ

s
}
max
{η
s
},β

t∑

s=0

|es|
2

subject to (27), (28), and:

t∑

s=0

|ηs|
2 +

1

γ
(β − ϕ−1)

′Γ−1(β − ϕ−1) ≤ µ. (29)
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Here µ > 0 measures the size of the set of the alternative models, which are represented by
different values of the parameter β and the shocks ηs satisfying (29). As is standard, we can
convert the problem from a constrained to a penalized one by putting a Lagrange multiplier
θ > 0 on the constraint (29). Then we can re-write the problem as:

min
{ϕ

s
}
max
{η
s
},β

t∑

s=0

(
|es|

2 − θ|ηs|
2
)
−

θ

γ
(β − ϕ−1)

′Γ−1(β − ϕ−1), (30)

subject to (27) and (28), where we leave off the inessential term in µ. Notice that θ and µ
are inversely related, so we can use θ as a measure of the size of the set of alternatives, which
hence is a measure of robustness.

As θ increases to infinity, perturbations are penalized more, and the size of the set of
alternatives shrinks (µ → 0) to just the baseline model. There is also a lower bound θ for
θ which makes the problem well-posed, and this “maximally robust” critical value is the
square of the so-called H∞ norm of the system, see (Hansen and Sargent 2004). This is the
largest set of uncertainty µ that the problem can tolerate, and also has an interpretation as
what is known as an induced norm. Loosely speaking, the H∞ norm of a system represents
the maximum factor by which errors in inputs get translated into errors in outputs.

The robust estimation problem (30) is a special type of a robust control problem, and in
turn is equivalent to a H∞ estimation problem, see (Hassibi, Sayed, and Kailath 1996). The
solution is known to have the following form:

ϕt+1 = ϕt +Ktzt(yt − z′tϕt) (31)

Kt =

(
P−1
t − θ−1ztz

′
t

)−1

1 + z′t
(
P−1
t − θ−1ztz′t

)−1
zt

P−1
t+1 = P−1

t + (1− θ−1)ztz
′
t, (32)

with P−1 = γΓ. Note the similarities between these equations and the Kalman filter algo-
rithm in (19)-(20) with V = 0. In particular, as θ→ +∞ we see that they coincide.

While the robust rule collapses to the Kalman filter as the level of robustness decreases,
it is more interesting in this case to consider the maximally robust learning rule with θ = θ.
(Hassibi, Sayed, and Kailath 1996) show that if limT→∞

∑T

t=0 z
′
tzt = +∞ and γΓ > supt ztz

′
t

(i.e. the difference is a positive definite matrix), then θ = 1.19 Recalling our discussion
above, if θ were greater than one, then the learning rule would magnify the effect of modeling
errors on estimation errors. But here the maximally robust learning rule allows for no such
magnification, and hence performs well in the face of misspecification.

Under these conditions, setting θ = θ = 1, we see from (32) that Pt = γΓ for all t. This

19(Hassibi, Sayed, and Kailath 1996) set Γ = I, but allowing for more general weighting matrices Γ is
straightforward.
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in turn implies that:

Kt =
(γ−1Γ−1 − ztz

′
t)
−1

1 + z′t (γ
−1Γ−1 − ztz′t)

−1 zt
= γΓ,

where the last equality follows from the matrix inversion lemma. Thus the “gain matrix”
Kt in the maximally robust learning rule (31) is constant over time, and thus this rule is
the generalized constant gain stochastic gradient rule (25) from above. We summarize this
discussion as follows:

Proposition 12 Given prior precision (γΓ)−1 on β, the GSG algorithm (25) is the maxi-
mally robust learning rule.

In the context of the self-referential economic model (1), of course, there is also the
issue of local stability of the REE. Since, according to Proposition 12, the maximally robust
learning rule takes the form of the GSG algorithm (25), the earlier stability results apply.
Thus the REE is locally stable if the matrix (16) is stable.

4.3 Constant Gain GSG Learning and Risk Sensitivity

The previous section showed that the constant gain GSG learning rule was the (maximally)
robust optimal predictor. This derivation was completely deterministic and relied on mini-
mizing the worst case performance of the predictor over a certain class of alternative models.
In this section we briefly discuss a different interpretation of these results in a stochastic set-
ting with enhanced risk aversion, known as risk-sensitivity.20 Once again we follow (Hassibi,
Sayed, and Kailath 1996).

Consider again the state space model (27), where now β and η are Gaussian random
variables with means ϕ−1 and 0 and variances γΓ and I respectively. Then instead of
minimizing the expected sum of squared errors as in the Kalman filter case, suppose that
agents solve the following:

min
{ϕ

s
}
2θ logE exp

(
1

2θ

t∑

s=0

|es|
2

)

(33)

subject to (27) and (28). This exponential adjustment of the objective function increases risk
aversion, and hence (33) is known as a risk-sensitive optimization problem (see (Whittle 1990)
for a monograph on problems of this type). This can also be thought of as a particular choice
of an undiscounted recursive utility objective as in (Epstein and Zin 1989).

While being motivated as an enhanced adjustment to risk instead of robustness against
unknown disturbances, there are well-established results linking the solutions of robust and

20Applications of risk-sensitivity in economics include (Tallarini 2000) and (Anderson 2004). See (Hansen
and Sargent 2004) for further discussion.

19



risk-sensitive control problems.21 In particular, as shown by (Hassibi, Sayed, and Kailath
1996), the risk sensitive optimal filter solving (33) is identical to the robust optimal filter
(31)-(32) above. Thus for the maximally robust level of θ = θ = 1, or what in the risk
sensitive formulation (Whittle 1990) calls “the point of the onset of neurotic breakdown,”the
risk-sensitive optimal predictor is again the constant gain GSG rule (25).

4.4 Some Simulation Exercises

In this section we provide the results of some simulation exercises which illustrate the robust-
ness of constant gain GSG learning. We first study a simple case of pure estimation, where
there is no feedback from agents’ beliefs. We then turn to a self-referential model, focusing
on the performance of SG as compared to RLS in the inflation model of (Sargent 1999) and
(Cho, Williams, and Sargent 2002).

4.4.1 An Estimation Example

In the first exercise, we examine the relative performance of RLS and two variants of GSG
learning in a pure estimation problem. We consider five different data generating processes
that are variations on (17)-(18). In each case (17) holds, but we assume different forms of
parameter drift. In particular, for each model we let the exogenous variables zt be bivariate
with evolution:

zt =

[
0.9 0.5
0 0.5

]
zt−1 +

[
0.5 0.05
0.05 0.5

]
et

where et is bivariate and distributed i.i.d. standard normal. Thus in each case, βt is a
bivariate as well, and we consider the following forms of parameter variation:

• M1: Constant coefficients, βt = βt−1 = β.

• M2: Time varying coefficients as in (18), with V = γ2σ2M−1
z , the prior consistent

with RLS and GSG with Γ = M−1
z .

• M3: Time varying coefficients as in (18), with V = γ2σ2Mz, the prior consistent with
classic SG with Γ = I.

• M4: Time varying coefficients as in (18), with V = γ2σ2I, the prior consistent with
GSG with Γ = M−0.5

z .

• M5: Time varying coefficients with a structural break. For the first 250 periods βt is
stationary and follows:

βt =

[
0.90 −0.1
0.49 0.5

]
βt−1 + γσ

[
1 1

−1 1

]
Λt,

21As noted above, these connections go back to (Jacobson 1973), but the explicit formulation given here
was established by (Glover and Doyle 1988). See (Whittle 1990), (Hassibi, Sayed, and Kailath 1996), and
(Hansen and Sargent 2004) for further discussions.
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Figure 1: Mean squared forecast error under RLS and two GSG specifications. Data gener-
ated constant coefficients (M1) and different specifications of random coefficients (M2-M5).
Medians of 1000 simulations of 500 periods, showing gain vs. MSE.

with Λt ∼ N(0, I). For the next 250 periods βt follows a random walk as in (18) where
Λt ∼ N(0, V ) and V = 5γ2I.

In each of the five models we study the performance of three constant gain learning
rules: RLS, standard SG with Γ = I, and generalized SG with Γ = M−0.5

z . Models 1-4 each
rationalize different optimal learning rules, with M1 favoring a decreasing gain RLS (which
we do not include as it performed badly in the other models), M2 favoring constant gain RLS
(or GSG with Γ = M−1

z )), M3 favoring classic SG with Γ = I, and M4 favoring GSG with
Γ = M−0.5

z . M5 is included to analyze the effect of misspecification and the performance of
the rules under structural breaks.

In Figure 1 we plot the results of a small simulation study. We set the standard de-
viation of ηt to σ = 0.5, and set β0 = [1, 1]′. We then consider 1000 simulations of 500
observations each. For each run we initialize each learning rule at a common value, drawing
each component of the initial vector independently from a normal distribution with mean 1
and standard deviation 0.5. For RLS, we also set the initial value of the moment matrix to
R0 = Mz. The figure then plots the median mean squared forecast error (MSE) from the
1000 simulations for different values of the gain γ.

Several points are worth mention. First, in all of the models the learning rules converge
rather quickly, as the faster convergence benefits of a larger gain setting are mostly offset by
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the additional volatility which results in larger MSE, except at the very low end. Thus in all
cases the minimum MSE occurs at a gain setting near γ = 0.02. For the constant coefficient
M1, all of the rules perform relatively well, with relatively small fluctuations around the true
value. Notice also that, as expected, the rules which are optimal for the particular model of
time variation performed best, at least for a range of gain settings. Thus RLS outperforms
the others in M2 (except at the very low end), classic SG does best in M3 (except at the
very high end) and the GSG rule does best in M4. Thus there is some benefit to the choice
of the particular Γ, but in many cases the differences are not large.

Some of our findings also illustrate the robustness of constant gain GSG rules. Thus we
also see that for small gain settings the performance of the GSG rules are nearly as good
as RLS in M2, while both GSG rules are always superior (except at the very high end) to
RLS in M3. This illustrates the robustness of GSG, although admittedly in many cases the
differences are not very large. More noticeably, the GSG rules perform much better than
RLS in M5, where all of the learning rules are misspecified. We see that for low gain settings
the classic SG rule performed quite well and was noticeably superior to RLS, particularly
for gains below 0.05. The other generalized SG rule was in between RLS and SG. One other
result to note is that the classic SG rule had relatively poor performance for high gain values
for models M1-M4, but improved substantially as the gain falls.

Recalling that gain γ also influences the volatility of parameter variation, this suggests
that for relatively volatile parameters, a GSG rule such as the one shown here may be the best
choice in trading off robustness and performance. For cases with less volatility, the classic
SG rule with small gain may be a better choice. In either case, our simulations confirm in
practice our theoretical results on the robustness of GSG learning in statistical models. We
next see whether this performance extends to a misspecified self-referential model.

4.4.2 The Conquest Model

In this section we analyze the implications of different learning rules in the model of adap-
tive learning in monetary policy due to (Sargent 1999). Building on work by (Sims 1988),
Sargent showed how a government adaptively fitting a Phillips curve model recurrently sets
inflation near the optimal level, although later inflation returns to the time-consistent sub-
optimal outcome. The escape dynamics leading the economy away from the equilibrium,
were analyzed by (Cho, Williams, and Sargent 2002) and (Williams 2001). However, these
papers focused on RLS. The impact of different prior beliefs in a Kalman filter setting was
studied by (Sargent and Williams 2005), but they did not explicitly study the impacts of
different types of learning rules as we do here.

Very briefly, the true economy in the model is governed by an expectations-augmented
Phillips curve which relates unemployment and surprise inflation. The government controls
inflation directly up to a random shock, but it bases its policy on a misspecified model which
omits the role of expectations and supposes that inflation and unemployment are directly
linked. Letting Ut be the unemployment rate, πt the inflation rate, π̂t expected inflation,
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and xt the government’s policy we have:

Ut = ut − θt(πt − π̂t) + σ1W1t (34)

πt = xt + σ2W2t (35)

π̂t = xt. (36)

Here ut is the natural unemployment rate, θt is the true slope of the Phillips curve, and
W1t and W2t are independent standard normal shocks. We extend the previous analyses of
this model by allowing βt = [ut, θt]

′ to be time varying. Equation (34) is an expectations-
augmented natural rate Phillips curve; (35) states that the government sets inflation up to
a random shock; (36) imposes rational expectations for the public.

The government does not know (34) but instead bases its policy on the estimated model:

Ut = b0t + b1tπt + ηt, (37)

where the estimates bt are updated over time. The government seeks to minimize the loss
E(U2

t + π2t ) and each period re-optimizes based on its latest estimates. This leads to the
policy rule:

xt = x(bt) ≡
−b0tb1t
1 + b21t

.

In the case of constant coefficients (βt = [u, θ]′), (Cho, Williams, and Sargent 2002) show
that there is a unique self-confirming equilibrium where b = [b0, b1]

′ = b̄ ≡ [u(1 + θ2),−θ]′.
In the notation above, we have zt = [1, πt] and so the moment matrix is:

Mz(b) =

[
1 x(b)

x(b) x(b)2 + σ22

]
.

As mentioned above, we consider two different updating rules: constant gain RLS as in
the previous work on this model, and standard SG learning with Γ = I.22 We also consider
two models for the true economy:

• M1: Constant coefficients: ut = u, θt = θ.

• M2: Time varying coefficients as in (18), where βt = [ut, θt]
′ with V = γ2σ2Mz(b̄)

−1,
the prior consistent with RLS.

Note that the misspecification of the government’s model, coupled with the self-referential
nature of the model makes neither learning rule optimal here. The prior in M2 is consistent
with RLS only in the absence of the self-referential feedback which is present here.

We then run another simulation study, whose results are shown in Figures 2 and 3.
We run 1000 simulations of 1000 periods each for a variety of gain settings. We take the

22SG learning with Γ = M−1

z
was similar to RLS for small gains, but had stability problems for larger

gain settings, so we do not report it here.
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Figure 2: Mean and variance of inflation and loss under classic SG (dashed line) and RLS
(solid line) learning with constant coefficients (Model 1) and random coefficients (Model 2).
Means of 1000 simulations of 1000 periods.
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Figure 3: Two simulated time paths of inflation under SG (dashed line) and RLS (solid line)
learning with constant coefficients (Model 1) and random coefficients (Model 2).

parameterization of the model from (Sargent 1999), and we initialize the government’s beliefs
at the self-confirming values b̄.23 For M2, we set the initial values β0 equal to the constant
values from M1. Figure 2 plots the mean and variance of inflation and the loss averaged over
the 1000 simulations in M1 and M2 under the two learning rules, while Figure 3 plots the
time series from two representative simulation runs in M1 and M2 for a gain of γ = 0.03.

Several points are worth noting about the figures. First, as Figure 3 makes clear, we find
that escapes happen under RLS but not under SG learning.24 The plots of inflation under
RLS in M1 look just like those in (Sargent 1999) and (Cho, Williams, and Sargent 2002),
exhibiting the recurrent escapes from the high time-consistent inflation rate (5 in this case)
to the low socially optimal rate (zero). But under SG learning the inflation rate always
remains near the self-confirming level. Thus SG is robust, as it remains near its limit in this
misspecified model. However, escapes are beneficial in this model, as they lead to the socially
optimal level of inflation. Thus the good statistical properties of SG learning lead to losses
in welfare here. This is clear from Figure 2 where we see that the mean rate of inflation is
much lower under RLS, although the escapes make the variance higher than under SG. But
the lower mean dominates and leads to the lower losses seen in the figure.25

23In particular, we set θ = 1, u = 5, σ1 = σ2 = σ = 0.3.
24This behavior was also noted by (Evans and Honkapohja 2001). There can be escapes with GSG. It

seems that in this model a non-diagonal Γ is necessary for escapes.
25The losses also depend on the 2nd moment of unemployment, but unemployment is exogenous here and
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However with time-varying coefficients in M2, the robustness properties of SG learning
lead to improvements in welfare as well as in estimation, at least for a range of gain settings.
Again we see from Figure 2 that the mean inflation rate is lower under RLS than SG for small
gain settings, although the mean drops for SG under larger gains. However the variance of
inflation under RLS is now significantly higher than under SG (note the units in the figure).
Thus for gain settings larger than 0.03 the large variance more than offsets the lower mean and
leads to larger losses. As Figure 3 makes clear, for small gain settings the behavior of SG is
nearly the same in M2 as in M1. The inflation rate fluctuates in a neighborhood of the initial
self-confirming equilibrium throughout the sample. RLS again experiences large fluctuations
similar to escapes, but instead of slowly returning to the equilibrium, the inflation rate drifts
substantially.26 The two simulated runs we show here illustrate that under RLS inflation
may rise well above the equilibrium rate, or may fall well below zero. These large fluctuations
lead to welfare losses relative to the stable inflation under SG learning.

5 Conclusions

We have examined convergence of adaptive learning when economic agents employ a sto-
chastic gradient algorithm, which is sometimes used because of its ease of use in numerical
simulations of global aspects of dynamics. The conditions for stability of SG learning differ
from but are related to E-stability, which governs stability under least squares learning. We
developed several sufficient conditions under which E-stability of the REE implies conver-
gence of SG learning. It was shown that sensitivity with respect to units of measurement is
a disadvantage of SG algorithms. However, there is a transformation of variables for which
E-stability governs SG stability.

Important advantages of SG over RLS algorithms emerge when parameter drift is con-
sidered. First, a generalized SG algorithm under constant gain has an approximate Bayesian
interpretation when the covariance matrix of the priors of parameter drift is proportional to
the product of the observation noise variance and the covariance matrix of the regressors.
(RLS algorithms have a similar property when the covariance matrix of the prior is instead
proportional to the inverse of the covariance matrix of the regressors.) The SG rule can
therefore adapt to relatively large parameter variation.

Second, it was shown that the generalized SG algorithm is a maximally robust optimal
prediction rule when there is parameter uncertainty. In other words, generalized SG rules
perform well across a range of alternative specifications. The maximal robustness property is
also related to risk-sensitivity in optimal filtering: the risk-sensitive optimal filter is identical
to the robust optimal filter, which in turn is just the constant gain generalized SG rule.

Our results suggest two conclusions. First, though SG stability is in general distinct from
E-stability, the connections suggest that E-stability continues to be a natural property to

hence is independent of the learning rule.
26These are not true escapes, since the coefficients in the true model are varying over time. Similarly, we

speak rather loosely of the equilibrium, since it also varies with the true model.
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check in studies of convergence of learning. Second, the versatility of SG learning make it a
viable model for learning, especially in settings where there is a lot of parameter variation
or risk of misspecification. The constant gain GSG class handles parameter drift (Bayesian),
deals with model misspecification (robust), and estimates parameters with lower risk (risk-
sensitive).

Appendix

A Numerical Examples

Example 1: (E-stability does not imply SG-stability) For n = 1 and k = 2 select

A = −1.8800, F =

(
−0.9390 −0.6979
0.8722 0.0828

)
, Σe =

(
1.0520 −0.5164

−0.5164 0.2581

)
.

These yield

(Mw ⊗ I)((F ′ ⊗A)− I) =

(
−0.2503 −1.3829
0.9012 0.3256

)
.

This solution is E-stable but it is not convergent under SG learning since the eigenvalues of
(Mw ⊗ I)((F ′ ⊗A)− I) are 0.0377± 1.7086i.

Example 2: (SG-stability does not imply E-stability) For n = 1 and k = 2 select

A = −1.9022, F =

(
−1.1281 0.7252
−0.4944 0.0117

)
, Σe =

(
0.5361 0.5760
0.5760 1.1807

)
.

These yield eigenvalues−0.0838±0.3493i for (Mw⊗I)((F ′⊗A)−I) and eigenvalues 0.0618±
0.3493i for F ′ ⊗A− I.

To find the counterexamples we simply conducted a random search over A,F and Σe under
the required constraints. The Matlab routine is available on request.

B Proofs of Results

Proof of Corollary 4: Since A− I is negative quasi-definite, (A+A′)/2− I has negative
eigenvalues and (A + A′)/2 has roots less than one. It follows that F ⊗ ((A + A′)/2) has
roots less than one and thus

F ⊗ (A+A′)− 2I = (F ⊗A− I) + (F ⊗A′ − I)

= (F ⊗A− I) + (F ⊗A− I)′
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has negative roots, i.e. F ⊗A− I is negative quasi-definite. Thus F ′⊗A− I is H-stable and
the result follows.

Proof of Proposition 5: We first prove that E-stability implies SG-stability. We can
write the differential equation associated with SG learning for the matrix multiplying the
exogenous variables as

ḃ = (AbF − b)Mw,

where we have dropped the inessential constant term involving B. Under our assumptions
Mw is diagonal. Next, we write the coefficient matrix A in real Jordan canonical form:
A = SΛS−1, where Λ is an upper block triangular matrix. The diagonal blocks are either

1×1 blocks, consisting of real eigenvalues, or 2×2 blocks of the form

(
a −b
b a

)
for nonreal

eigenvalues of the form a± bi. Multiplying we get

S−1ḃ = (ΛS−1bF − S−1b)Mw,

which, defining q = S−1b, is
q̇ = (ΛqF − q)Mw.

We then vectorize to get

vec(q̇) = (MwF ⊗ Λ−Mw ⊗ I)vec(q)

= (Mw ⊗ I)(F ⊗ Λ− I)vec(q).

Now the matrix F ⊗ Λ− I is block diagonal, i.e.






f1Λ− I 0 · · · 0
0 f2Λ− I · · · 0

... · · ·
...

. . .
...

0 0 · · · fKΛ− I






,

where moreover fiΛ− I are upper triangular matrices. Also Mw⊗ I is a diagonal matrix, so
that we get

(Mw ⊗ I)(F ⊗ Λ− I) =






m1(f1Λ− I) 0 · · · 0
0 m2(f2Λ− I) · · · 0

... · · ·
...

. . .
...

0 0 · · · mK(fKΛ− I)






.

Each of the matrices mk(fkΛ− I) is upper block triangular with either diagonal elements of
the form

mk(fkλi − 1),
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where mk > 0 and where fkλi − 1 is negative by E-stability, or 2× 2 blocks of the form

mk

(
fk

(
a −b
b a

)
− I2

)
,

which again has eigenvalues with negative real parts by E-stability.
To prove that SG-stability implies E-stability, we note that mk(fkλi − 1) < 0 for real

eigenvalues of A and negativity of eigenvalues of mk

(
fk

(
a −b
b a

)
− I2

)
for a complex

pair of eigenvalues of A clearly also imply fkλi − 1 < 0 and negativity of eigenvalues of

fk

(
a −b
b a

)
− I2, respectively as mk > 0 for all k. The latter are just the E-stability

conditions.

Proof of Proposition 6: We need to show that the eigenvalues of Mw(AF ′ − I) have
negative real parts. We use results on the field of values of matrices given in (Horn and
Johnson 1991). Let F(N) denote the field of values of a matrix N , which is defined as
F(N) = {z∗Nz | z ∈ Cn with |z| = 1}. Here z∗ denotes the complex conjugate of z′. By
assumption F ′ is a “contraction” in the sense used by Horn and Johnson. By p. 155 of
(Horn and Johnson 1991) we can write F ′ as a finite sum F ′ =

∑
ciUi where 0 < ci < 1,

with
∑

ci = 1, and where Ui are unitary matrices. Since unitary matrices are normal, F(Ui)
is equal to the convex hull of the spectrum of Ui, which we denote σ(Ui), see p. 11 of (Horn
and Johnson 1991). Thus F(Ui) is a subset of the unit disk since the eigenvalues of Ui lie
exactly on the unit circle (see p. 71 of (Horn and Johnson 1985)). By the properties of fields
of values given on pp. 9-10 of (Horn and Johnson 1991) we have

F(F ′) ⊂
∑

ciF(Ui) ⊂ unit disk.

Hence F(AF ′−I) = AF(F ′)−1 lies in the left half-plane of the complex plane. Next we note
that F(Mw) is a subset of the positive reals since Mw is symmetric positive definite. (This
can be verified by direct computation). Finally, we use the result that σ(CD) ⊂ F(C)F(D)
if D is positive semidefinite (p. 67 of (Horn and Johnson 1991)). Thus σ(M(AF ′ − I)) lies
in the negative half-plane.

Proof of Lemma 9: Equation (23) is an algebraic Riccati equation. Existence of a
unique positive definite solution P follows from Theorem 3.7 of (Kwakernaak and Sivan
1972). The time invariant regulator associated with (23) takes the form ẋ(t) = u(t) and
z(t) = x(t). Thus in their general set-up we are setting A = 0, B = D = I, R3 = σ−2V and
R−12 = Mz. The result requires that the associated regulator is stabilizable and detectable.
Stabilizability is in turn implied by complete controllability (see their Theorem 1.27), which
follows from their Theorem 1.23. Detectability is implied by complete reconstructability (see
their Theorem 1.36), which follows from their Theorem 1.32. This establishes the existence
of a unique P .
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To show local convergence we linearize and vectorize (22), yielding

vec dPt+1 = (I − PM ⊗ I − I ⊗ PM) vec dPt,

where dPt refers to the deviation from the steady state P . The eigenvalues of the coefficient
matrix are given by 1 − 2λ where the λ are the eigenvalues of PM . This follows from
Theorem 4.4.5 of (Horn and Johnson 1991) concerning the eigenvalues of the Kronecker sum
of two matrices. Next, note that Theorem 7.6.3 of (Horn and Johnson 1985) implies that
the eigenvalues of PM are positive. Finally, for V sufficiently small, P is small and the
eigenvalues of PM can be made small. Thus V sufficiently small implies that all eigenvalues
of the coefficient matrix have modulus strictly less than one. Local stability follows.

Proof of Proposition 10: (i) Given the positive definite matrix Ω, Lemma 9 shows
that for γ > 0 sufficiently small, and hence for V sufficiently small, the difference equation
(22) has a unique positive definite fixed point P and P is locally stable. It follows that the
evolution of ϕt can be approximated by (25). Finally, as noted in Section 3.3, local stability
of ϕ̄ under (25) is determined by (16).

(ii) Under the transformation z̃t = Dzt the model being estimated becomes

yt = β̃
′

t−1z̃t + ηt

β̃t = β̃t−1 + Λ̃t,

where β̃t = D−1βt and Λ̃t = D−1Λt with cov(Λ̃t) = D−1VD−1. The corresponding estimator
of β̃t is given by

ϕ̃t+1 = ϕ̃t + P̃tz̃t(yt − ϕ̃′tz̃t)

P̃t+1 = P̃t − P̃tMz̃P̃t + σ−2Ṽ ,

where Mz̃ = limt→∞Ez̃tz̃
′
t = DMzD and Ṽ = D−1V D−1. The initial priors will also be

related by ϕ̃0 = D−1ϕ0 and P̃0 = D−1PtD
−1. It is easily seen that the ϕ̃t, P̃t system is

equivalent to (21)-(22) with ϕt = Dϕ̃t and Pt = DP̃tD.

Proof of Proposition 11: By (ii) of Proposition 10, the Bayesian learning rule is
invariant to a transformation of variables. Letting w̃t = Lwt we have w̃t = F̃ w̃t−1 and
Mz̃ = I. Since (26) is H-stable then (16) is stable for all Γ and hence for all V . Stability of
the REE then follows by (ii) of Proposition 10.

C The Model with Lagged Endogenous Variables

Suppose that the model is extended to include lagged endogenous variables:

yt = α+AE∗
t yt+1 +Bwt + Cyt−1, (38)

wt = Fwt−1 + et.
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The MSV REE now takes the form

yt = a+ bwt + cyt−1, (39)

where the REE values (ā, b̄, c̄) solve the equations

(I −Ac−A)a = α

Cc2 − c+ C = 0

(I −Ac)b−AbF = B.

Under learning we assume that agents see current shocks but not the current value of the
endogenous variable. The PLM of the agents is (39) and the ALM is easily computed to be

yt = α+A(I + c)a+ (A(bF + cb) +B)wt +Ac2yt−1

and thus the T−map is

T (ϕ)′ = (α+A(I + c)a,A(bF + cb) +B,Ac2).

Defining z′t = (1′, w′t, y
′
t−1) and ϕ′ = (a, b, c), the formal details of the GSG algorithm and the

differential equation are analogous to (4). In particular, the associated differential equation
is

dϕ′

dτ
= (T (ϕ)− ϕ)′Mz(ϕ)Γ

where Mz(ϕ) = limEzt(ϕ)z
′
t(ϕ) and where zt(ϕ) denotes the stochastic process (39) with

fixed ϕ. Fixed points of T (ϕ) correspond to REE and we require that the REE process of
interest be stationary, i.e. the eigenvalues of c̄ lie inside the unit circle.

Linearizing the transposed differential equation, taking the differential and evaluating at
the fixed point ϕ̄, we get

d[(T (ϕ)− ϕ)′Mz(ϕ)]|ϕ=ϕ̄ = (T (ϕ̄)− ϕ̄)′dMz(ϕ̄)Γ + (dT (ϕ̄)− dϕ̄)′Mz(ϕ̄)Γ

= (dT (ϕ̄)− dϕ̄)′Mz(ϕ̄)Γ,

since the first term (T (ϕ̄) − ϕ̄)′dMz(ϕ̄)Γ is zero. Next, letting dT ′ = [dT ′a, dT
′
b, dT

′
c] and

vectorizing we have

dvec[(T (ϕ)− ϕ)′Mz(ϕ)Γ]|ϕ=ϕ̄ = (ΓMz ⊗ I)(DT ′ − I)dvecϕ′,

where Mz and DT ′ are evaluated at ϕ̄. The linearized differential equation is thus

dvecϕ′

dτ
= (ΓMz ⊗ I)(DT ′ − I)vecϕ′. (40)

From this equation we see that we get the same formal structure as in the forward-
looking model, but now the multiplying matrix Mz involves the moments of the exogenous
and endogenous variables. It is possible to compute explicitly the expression for DT ′:

DT ′ =




I ⊗A+ I ⊗Ac̄ 0 ā′ ⊗A

0 F ′ ⊗A+ I ⊗Ac̄ b̄′ ⊗A
0 0 I ⊗Ac̄+ c̄′ ⊗A



 .

We conclude that the SG-stability condition is that all eigenvalues of (ΓMz ⊗ I)(DT ′ − I)
have negative real parts.
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