403 research outputs found

    0.596 Pb/s S, C, L-Band Transmission in a 125μm Diameter 4-Core Fiber using a Single Wideband Comb Source

    Get PDF
    We demonstrate 596.4 Tb/s over a standard cladding diameter fiber with 4 single-mode cores, using a single wideband optical comb source to provide 25 GHz spaced carriers over 120 nm range across S, C and L bands

    Impact of non-idealities on GNSS meta-signals processing

    Get PDF
    This paper deals with the concept of GNSS meta-signal processing, defined as the coherent process of two GNSS signals, broadcast on different carriers, and treated as a single wideband signal. The purpose of the paper is twofold: to analyse the effects on non-idealities on the meta-signal components and to investigate alternative schemes for the actual implementation inside the receiver

    The design and realization of uniplanar CPW fed PICA slot antennas

    Get PDF
    In modern wireless communication system design, antennas with wide impedance bandwidth are desirable for numerous reasons. An antenna with a wide impedance bandwidth may be used for transmission and reception of multiple narrowband services in a multi-purpose platform. Alternatively a single wideband service may be of interest for various radar and imaging applications, or for impulse based radio communications in the FCC ultra-wideband (UWB) regime from 3.1 GHz to 10.6 GHz

    Generation of 1180 Ã… period gratings with a Xe ion laser

    Get PDF
    Holographic lithography with the 2315 Ã… line of a xenon ion laser is used to produce gratings in polymethylmethacrylate. An 1180 Ã… period grating is made and examined with a scanning electron microscope (SEM). This grating period is appropriate for use as a first-order grating with a GaAs distributed feedback laser

    Frequency-Multiplexed Array Digitization for MIMO Receivers: 4-Antennas/ADC at 28 GHz on Xilinx ZCU-1285 RF SoC

    Get PDF
    Communications at mm-wave frequencies and above rely heavily on beamforming antenna arrays. Typically, hundreds, if not thousands, of independent antenna channels are used to achieve high SNR for throughput and increased capacity. Using a dedicated ADC per antenna receiver is preferable but it\u27s not practical for very large arrays due to unreasonable cost and complexity. Frequency division multiplexing (FDM) is a well-known technique for combining multiple signals into a single wideband channel. In a first of its kind measurements, this paper explores FDM for combining multiple antenna outputs at IF into a single wideband signal that can be sampled and digitized using a high-speed wideband ADC. The sampled signals are sub-band filtered and digitally down-converted to obtain individual antenna channels. A prototype receiver was realized with a uniform linear array consisting of 4 elements with 250 MHz bandwidth per channel at 28 GHz carrier frequency. Each of the receiver chains were frequency-multiplexed at an intermediate frequency of 1 GHz to avoid the requirement for multiple, precise local oscillators (LOs). Combined narrowband receiver outputs were sampled using a single ADC with digital front-end operating on a Xilinx ZCU-1285 RF SoC FPGA to synthesize 4 digital beams. The approach allows MM -fold increase in spatial degrees of freedom per ADC, for temporal oversampling by a factor of MM

    Estimating Sparse Signals Using Integrated Wideband Dictionaries

    Full text link
    In this paper, we introduce a wideband dictionary framework for estimating sparse signals. By formulating integrated dictionary elements spanning bands of the considered parameter space, one may efficiently find and discard large parts of the parameter space not active in the signal. After each iteration, the zero-valued parts of the dictionary may be discarded to allow a refined dictionary to be formed around the active elements, resulting in a zoomed dictionary to be used in the following iterations. Implementing this scheme allows for more accurate estimates, at a much lower computational cost, as compared to directly forming a larger dictionary spanning the whole parameter space or performing a zooming procedure using standard dictionary elements. Different from traditional dictionaries, the wideband dictionary allows for the use of dictionaries with fewer elements than the number of available samples without loss of resolution. The technique may be used on both one- and multi-dimensional signals, and may be exploited to refine several traditional sparse estimators, here illustrated with the LASSO and the SPICE estimators. Numerical examples illustrate the improved performance

    Universal Quantum Limits on Single-Channel Information, Entropy, and Heat Flow

    Get PDF
    We show that the recently discovered universal upper bound on the thermal conductance of a single channel comprising particles obeying arbitrary fractional statistics is in fact a consequence of a more general universal upper bound, involving the averaged entropy and energy currents of a single channel connecting heat reservoirs with arbitrary temperatures and chemical potentials. The latter upper bound in turn leads, via Holevo\u27s theorem, to a universal (i.e., statistics independent) upper bound on the optimum capacity for classical information transmission down a single, wideband quantum channel
    • …
    corecore