5,102 research outputs found

    The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics

    Get PDF
    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic (MHD) instabilities and other high-β\beta phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets which create an axisymmetric multicusp that contains \sim14 m3^{3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%)(>50\%). At present, 8 lanthanum hexaboride (LaB6_6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating (ECH) power is planned for additional electron heating. The LaB6_6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J×B{\bf J}\times{\bf B} torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm>1000Rm > 1000, and an adjustable fluid Reynolds number 10<Re<100010< Re <1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (MA2=(M_A^2=(v//vA)2>1_A)^2 > 1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.Comment: 14 pages, 13 figure

    Efficient solution of 3D electromagnetic eddy-current problems within the finite volume framework of OpenFOAM

    Full text link
    Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential and the electric scalar potential. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.Comment: 47 pages, improved figures, updated references, fixed typos, reverse phase shift, consistent use of inner produc

    GMC Collisions As Triggers of Star Formation. IV. The Role of Ambipolar Diffusion

    Full text link
    We investigate the role of ambipolar diffusion (AD) in collisions between magnetized giant molecular clouds (GMCs), which may be an important mechanism for triggering star cluster formation. Three dimensional simulations of GMC collisions are performed using a version of the Enzo magnetohydrodynamics code that has been extended to include AD. The resistivities are calculated using the 31-species chemical model of Wu et al. (2015). We find that in the weak-field, 10μG10\:{\rm \mu G} case, AD has only a modest effect on the dynamical evolution during the collision. However, for the stronger-field, 30μG30\:{\rm \mu G} case involving near-critical clouds, AD results in formation of dense cores in regions where collapse is otherwise inhibited. The overall efficiency of formation of cores with nH106cm3n_{\rm H}\geq10^{6}\:{\rm cm}^{-3} in these simulations is increases from about 0.2% to 2% once AD is included, comparable to observed values in star-forming GMCs. The gas around these cores typically has relatively slow infall at speeds that are a modest fraction of the free-fall speed.Comment: 15 pages, 15 figures, Accepted to Ap

    GMC Collisions As Triggers of Star Formation. IV. The Role of Ambipolar Diffusion

    Get PDF
    We investigate the role of ambipolar diffusion (AD) in collisions between magnetized giant molecular clouds (GMCs), which may be an important mechanism for triggering star cluster formation. Three dimensional simulations of GMC collisions are performed using a version of the Enzo magnetohydrodynamics code that has been extended to include AD. The resistivities are calculated using the 31-species chemical model of Wu et al. (2015). We find that in the weak-field, 10μG10\:{\rm \mu G} case, AD has only a modest effect on the dynamical evolution during the collision. However, for the stronger-field, 30μG30\:{\rm \mu G} case involving near-critical clouds, AD results in formation of dense cores in regions where collapse is otherwise inhibited. The overall efficiency of formation of cores with nH106cm3n_{\rm H}\geq10^{6}\:{\rm cm}^{-3} in these simulations is increases from about 0.2% to 2% once AD is included, comparable to observed values in star-forming GMCs. The gas around these cores typically has relatively slow infall at speeds that are a modest fraction of the free-fall speed.Comment: 15 pages, 15 figures, Accepted to Ap

    Collisionless Magnetic Reconnection in Space Plasmas

    Get PDF
    Magnetic reconnection requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion) region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and knowledge. Only a small amount of observations is included in order to support the few selected numerical simulations.Comment: Review pape

    Magnetic field, temperature and velocity distribution measurements in an electromagnetic induction pump using a small ferrite core coil system

    Get PDF
    International audienceIn this paper technique of local AC magnetic field, temperature and velocity measurements in the gap between electromagnetic induction pump (EMIP) channel and inductor using a single ferrite core coil is discussed. Described method has several important advantages: high signal/noise ratio due to ferrite core, small size of a sensor, three parameter measurement, non-intrusiveness, low cost etc. However, some significant limitations should be also considered: saturation of ferrite core with relatively low fields and temperature dependence on magnetic permeability characteristic of ferrite material. Finally, this perspective measurement method was tested in University of Latvia (UL) and implemented in measurement system of TESLA-EMP loop in Institute of Physics of University of Latvia (IPUL). Some relevant results of these experiments are presented
    corecore