3 research outputs found

    Solving uncapacitated multilevel lot-sizing problems using a particle swarm optimization with flexible inertial weight

    Get PDF
    AbstractThe multilevel lot-sizing (MLLS) problem is a key production planning problem in materials requirements planning (MRP) system. The MLLS problem deals with determining the production lot-sizes of various items appearing in the product structure over a given finite planning horizon to minimize the production cost, the inventory carrying cost, the back ordering cost and etc. This paper proposed a particle swarm optimization (PSO) algorithm for solving the uncapacitated MLLS problem with assembly structure. All the mathematical operators in our algorithm are redefined and the inertial weight parameter can be either a negative real number or a positive one. The feasibility and effectiveness of our algorithm are investigated by comparing the experimental results with those of a genetic algorithm (GA)

    Single Point Stochastic Search Algorithms for the Multi Level Lot Sizing Problem

    No full text
    Among the most common decisions in manufacturing and distribution companies are probably those regarding Material Requirements Planning. However, that firms are daily confronted with these decisions does not mean they are easy to handle. The multi-level lot-sizing (MLLS) problem is a combinatorial optimization problem which can only be solved optimally within reasonable delays when small instances are considered. This has motivated the search for heuristic techniques achieving a satisfactory balance between computational demands and cost effectiveness. In particular, the MLLS problem has characteristic features that have permitted the development of specific methods: interdependencies exist among stages in the product structure. In this paper, we examine the performance of single point stochastic techniques and compare them to several problem specific algorithms that exist in the literature. A large set of 280 variants of stochastic search algorithms is designed and applied to a variety of problems of small and large size. We find that these techniques, despite their simplicity and the widespread belief that they are generally efficient, only seldom outperform problem-specific algorithms, and when they do so it is usually associated with a much longer execution time. We also exhibit an efficient combination of search and annealing which is found able to produce significant and consistent improvements over problem-specific algorithms.ou

    Variable neighborhood search for the multi-level capacitated lotsizing problem

    Get PDF
    Das dynamische mehrstufige kapazitierte Losgrößenproblem (MLCLSP) behandelt im Rahmen der Produktionsplanung die wichtige Entscheidung über die optimalen Losgrößen, angefangen bei Endprodukten über Komponenten bis hin zu Rohstoffen, bei gleichzeitiger Berücksichtigung beschränkter Kapazitäten der zur Produktion benötigten Ressourcen. Da es sich um ein NP-schweres Problem handelt, stoßen exakte Lösungsverfahren an ihre Grenzen, sobald die Problemdimensionen ein größeres – man könnte durchaus sagen realistisches – Ausmaß erreichen. In der Praxis dominieren deshalb Methoden, die die Losgrößen der einzelnen Produkte sequenziell festlegen und überdies etwaige Kapazitätsbeschränkungen im Nachhinein, falls überhaupt, berücksichtigen. In der Literatur finden sich zahlreiche approximative Ansätze zur Lösung dieses komplexen betriebswirtschaftlichen Problems. Lokale Suche und auf ihr basierende Metaheuristiken stellen vielversprechende Werkzeuge dar, um die Defizite der aktuell eingesetzten Trial-and-Error Ansätze zu beheben und letzten Endes zulässige sowie kostenoptimale Produktionspläne zu erstellen. Die in dieser Diplomarbeit vorgestellte Studie beschäftigt sich mit lokalen Suchverfahren für das MLCLSP. Acht Nachbarschaftsstrukturen, die sich aus einer Veränderung der Rüstvariablen ergeben, werden präsentiert und evaluiert. Grundlegende Optionen bei der Gestaltung eines iterativen Verbesserungsverfahrens, wie beispielsweise unterschiedliche Schrittfunktionen oder die temporäre Berücksichtigung unzulässiger Lösungen, werden getestet und verglichen. Obwohl nur die Switch Nachbarschaft, die durch das Ändern einer einzigen Rüstvariable definiert wird, wirklich überzeugende Resultate liefert, können die übrigen Nachbarschaftsstrukturen durchaus als Perturbationsmechanismen im Rahmen einer Variablen Nachbarschaftssuche (VNS) zum Einsatz kommen. Die Implementierung dieser Metaheuristik, geprägt von den Ergebnissen der einfachen lokalen Suchverfahren, kann allerdings nicht vollkommen überzeugen. Die entwickelte VNS Variante kann die Lösungsgüte anderer zum Vergleich herangezogener Lösungsverfahren nicht erreichen und benötigt relativ lange Laufzeiten. Andererseits sind die Ergebnisse mit einer durchschnittlichen Abweichung zur besten bekannten Lösung von etwa vier Prozent über sämtliche untersuchte Problemklassen weit entfernt von einem Totalversagen. Es überwiegt der Eindruck, dass es sich um eine robuste Methode handelt, die in der Lage ist, Lösungen von hoher, teils sehr hoher Qualität nicht nur in Ausnahmefällen zu liefern. Etwaige Nachjustierungen könnten das Verfahren durchaus zu einem ernstzunehmenden Konkurrenten für bereits existierende Lösungsmethoden für das MLCLSP machen.The Multi-Level Capacitated Lotsizing Problem (MLCLSP) depicts the important decision in production planning of determining adequate lot sizes from final products onward, to subassemblies, parts and raw materials, all the while assuming limited capacities of the resources employed for manufacture. It is an NP-hard problem where exact methods fail in solving larger – one could say realistic – problem instances. Sequential approaches that tackle the problem item by item and postpone capacity considerations dominate current practice; approximate solution methods abound throughout the literature. Local search and metaheuristics based on it constitute a class of approximate methods well-equipped to take on the challenge of eventually replacing the trial-and-error process that impedes manufacturing companies in establishing feasible and cost-minimal production plans. This thesis presents a study of local search based procedures for solving the MLCLSP. Eight different neighborhood structures, resulting from manipulations of the setup variables, are devised and evaluated. Fundamental options when designing an iterative improvement algorithm, such as best-improvement versus first-improvement step functions or the inclusion of infeasible solutions during the search are explored and compared. Although only the Switch move, which alters the value of a single setup value, is convincing as a stand-alone neighborhood structure, the other neighborhoods can in any case be employed for the perturbation of solutions during the shaking step of a Variable Neighborhood Search (VNS). The implementation of this metaheuristic, shaped by the findings from testing the basic local search variants, led to mixed results. The procedure designed to tackle the MLCLSP cannot outperform the compared heuristics. Neither does it produce results that are terribly off – the average gap to the best known solutions settles around four percent over all problem classes tested. Nonetheless, the impression is supported that the VNS procedure is a robust method leading to good, sometimes even very good solutions at a regular basis that is amenable to further adjustments and thus eventually becoming a serious competitor for existing methods dealing with multi-level capacitated lotsizing decisions
    corecore