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a b s t r a c t

Themultilevel lot-sizing (MLLS) problem is a key production planning problem inmaterials
requirements planning (MRP) system. The MLLS problem deals with determining the
production lot-sizes of various items appearing in the product structure over a given finite
planning horizon to minimize the production cost, the inventory carrying cost, the back
ordering cost and etc. This paper proposed a particle swarm optimization (PSO) algorithm
for solving the uncapacitatedMLLS problemwith assembly structure. All themathematical
operators in our algorithm are redefined and the inertial weight parameter can be either a
negative real number or a positive one. The feasibility and effectiveness of our algorithmare
investigated by comparing the experimental resultswith those of a genetic algorithm (GA).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Material requirements planning (MRP) is an old field of study within business, but it still plays an important part in
coordinating replenishment decisions for complex finished goods. The MLLS problem in MRP systems belongs to those
problems that industry manufacturers daily face in organizing their overall production plans [1]. The objective of the
problem is to decide the optimal production lot size and the inventory volume tominimize the production cost, the inventory
carrying cost, the back ordering cost and etc [2]. The MLLS problem is a combinatorial optimization problem which can
be classified into different categories according to the product structures (e.g., single level system, serial, assembly, and
general systems) and the capacity structures (e.g., uncapacitated, capacitated single resource, and capacitated multiple
resources) [3]. Table 1, which is based on Ref. [3], gives a brief review of some important literature for the different categories
of the capacitated lot-sizing problem.
In both MRP and manufacturing resource planning (MRPII), capacity is an important factor that is always checked by

a capacity requirements planning (CRP) module, but it does not mean that the uncapacitated problem is an out-of-date
problem. One can justify this by the fact that, in practice, uncapacitated lot-sizing models continue to be largely used since
the implementation of capacitated approaches requiresmuch data which firms are often reluctant to collect ormaintain [4].
So the uncapacitated problem still has significance.
For solving the MLLS problem, people used to adopt heuristics (e.g. Wagner–Whitin, Silver–Meal and etc.) [2]. Recently,

the applications of evolutionary computing methods (ECM) were seen in some papers. Tang [14] adopted simulated
annealing to solve uncapacitated serial structure problems; Dellaert an Jeunet [1,24] used genetic algorithms for solving an
uncapacitated general structure problem; Xie and Dong [3] proposed a heuristic genetic algorithm for a capacitated general
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Table 1
Different lot-sizing problems and some important literature.

Production structure Uncapacitated Single resource Multiple resources

Single level [5–7] [8–12]
Serial [5,13,14] [13]
Assembly [5,15–17] [18–21]
General [1,5,22–26,4] [27,28] [3,29,30]

Fig. 1. Three major types of product structures.

structure problem; Dellaert and Jeunet [25] designed randomized heuristics for uncapacitated general structure problems;
Jeunet and Jonard [26] developed single-point stochastic search algorithms for uncapacitated general structure problems
and Pitakaso et al. [4] presented a max–min ant system for uncapacitated general structure problems. ECM may not get
the optimal solution to a problem, but it takes little effort to reach a near-optimal solution. A PSO algorithm, which is one
of the ECM, was developed by Kennedy and Eberhart in 1995 [31]. The original intent of PSO was to graphically simulate
the graceful but unpredictable choreography of a bird flock. PSO exhibits common evolutionary computation attributes
including: (1) it is initialized with a population of random solutions, (2) it searches for optima by updating generations,
and (3) potential solutions, called particles, are then ‘‘flown’’ through the problem space by following the current optimum
particles [32]. So far, fewpeople have adopted a PSO algorithm to solve theMLLS problem.Hereweproposed a PSO algorithm
for solving an uncapacitated MLLS problem with assembly structure and the feasibility and effectiveness of our algorithm
are investigated. Also, we plan to extend this approach to general structure problems with limited and unlimited capacities.
This paper is organized as follows: Section 2 is dedicated to the presentation and mathematical formulation of the MLLS

problem. In Section 3, a brief introduction of a PSO algorithm and the framework of the proposed algorithm will be stated.
The experimental frameworks and the computational results will be presented in Section 4. Finally, the conclusion and
outlook can be found in Section 5.

2. Model formulation

In the MLLS problem, there are three major product structures: (1) assembly structure (2) arborescent structure (3)
general structure. Fig. 1 shows three major types of product structures.
It is rather common to represent the bill of materials as a directed acyclic graph. In such a graph each node corresponds

to an item and each edge (i, j) between node i and node j indicates that item i is directly required to assemble item j. Here,
Γ −1(i) and Γ (i) are used to present the sets of immediate predecessors and immediate successors of node i. The set of
ancestors-immediate and non-immediate predecessors of item i is denoted by Γ̂ −1(i) and the set of all successors by Γ̂ (i).
In the last structure, product 1 is a finished good. So, we have for example Γ −1(1) = {2, 3}; Γ̂ −1(1) = {2, 3, 4, 5};Γ (4) =
{2, 3}; Γ̂ (4) = {1, 2, 3} [24].
We assume that the production structure includes only one finished good (product). Variable cost parameters and

variable purchase or production costs are not taken into account. In addition, we assume that no component is sold to
an outside buyer, i.e. independent demands only exist for finished goods. Furthermore, no backlogging is allowed and lead-
times of all items are zero. For the sake of simplicity, we assume that neither positive initial inventories (Ii,0 = 0,∀i) nor
scheduled receipts are introduced. In such a context net requirements equal gross requirements for any item in the product
structure [24]. TheMLLS problem is a mixed integer programming problem. So we describe this problemwith the following
notations:

i the index of item
Ci,j quantity of item i required to produce a unit of item j
Hi unit inventory carrying cost for item i
Ki set up cost for item i
li lead time to assemble, to manufacture or to purchase item i
Ii,t inventory level of item i at the end of period t
ai,t a binary decision index addressed to capture the set-up cost for item i delivered in period t
Di,t requirements for item i in period t
Pi,t the amounts of production/replenishment for item i in period t
M a very big number
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N the total number of items
T the length of production horizon.

Let decision variable ai,t ∈ {0, 1} denotes whether or not the item i is produced in period t , then the decision matrix is
expressed as:

A =


a1,1 a1,2 · · · a1,T
a2,1 a2,2 · · · a2,T
...

...
...

...
aN,1 aN,2 · · · aN,T

 . (2.1)

We combined themathematical model of reference [4] and that of reference [24] and presented themathematical model
of the uncapacitated MLLS problem with assembly structure as follows:

Min.
N∑
i=1

T∑
t=1

(Hi × Ii,t + Ki × ai,t). (2.2)

Subject to (each constraint must hold ∀i, t)

Ii,t = Ii,t−1 + Pi,t − Di,t (2.3)

Di,t =

Di,t if Γ (i) = Φ∑
j∈Γ (i)

Ci,j × Pj,t+lj otherwise (2.4)

Pi,t = ai,tDi,t +
T∑

m=t+1

(
ai,m+1Di,m

m∏
q=i+1

(1− ai,q)

)
(2.5)

Pi,t −Mai,t ≤ 0, ai,t ∈ {0, 1} (2.6)

Pi,t ≥ 0, Ii,t ≥ 0. (2.7)

The objective function (2.2) is the sumof set-up and inventory holding costs for all items over the entire planning horizon.
Eq. (2.3) stands for the balance equation of production/replenishment inventory and demand. The second constraint (2.4)
provides a formula to calculate the internal demand. This is a typical format of modeling the multilevel lot-sizing problem.
Constraint equation (2.5) guarantees that the replenishment size of a certain period depends on the set-up decision for the
latter periods. Constraint (2.6) guarantees that a set-up cost will be incurred when a batch is purchased or produced. Finally,
Constraint (2.7) states that a backlog is not allowed and that production is either positive or zero.
Some attributes of the optimal solution can be found in reference [1].

3. Design scheme of a PSO algorithm for the MLLS problem

A PSO algorithm is an evolutionary computation technique formally introduced in 1995 [32]. It has been applied to
many scientific research fields. The convergence and parameterizations aspects of the PSO algorithm have been discussed
thoroughly [33]. The formulas have been developed for applications in artificial life and articulated five basic principles
of swarm intelligence. The concept of particle swarm originated as a substitution of a simplified social system. The original
intentwas to graphically simulate the graceful but unpredictable choreography of a bird flock. PSO starts its search procedure
with a particle swarm. Each particle in the swarm keeps track of its coordinates in the problem space, which are associated
with the best solution (fitness) it has achieved so far. This value is called pBest. Another ‘‘best’’ value that is tracked by the
global version of the particle swarm optimization is the overall best value, and its location, obtained so far by any particle
in the population is called gBest. The updates of the particles are accomplished according to the following equations:

vi+1 = ω ∗ vi + C1 ∗ rand() ∗ (pbest − xi)+ C2 ∗ Rand() ∗ (gbest − xi). (3.1)
xi+1 = xi + vi+1. (3.2)

The acceleration constants C1 and C2 in Eq. (3.1) represent the weighting of the stochastic acceleration terms that pull
each particle towards pBest and gBest positions. Thus, adjustment of these constants changes the amount of ‘‘tension’’ in the
system. Low values of them allow particles to roam far from target regions before being tugged back, while high value
results in abrupt movement toward, or past through target regions. Particle’s velocities on each dimension are confined to
a maximum velocity vmax which is a parameter specified by the user. If the sum of accelerations would cause the velocity
on that dimension to exceed vmax, then the velocity on that dimension is limited to vmax [32]. For more information on the
principle of the PSO algorithm see Ref. [32,33].
Now, we put the MLLS problem into the framework of a PSO algorithm. Our algorithm can be viewed as a discrete

one. All the mathematical operators in Eqs. (3.1) and (3.2) are redefined and the inertial weight parameter can be either
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Fig. 2. Illustration of the plus operation between a position and a velocity.

Fig. 3. Illustration of the minus operation between two positions.

a negative real number or a positive one. The thought of adopting a discrete PSO algorithm for solving the MLLS problem
comes from Ref. [34]. During the execution of our algorithm, only feasible solutions are taken into consideration [1]. Any
infeasible solution is immediately revised into a feasible solution after its appearance. In this algorithm, the state space (S)
is composed of a collection (A) of decision matrixes (candidate solutions) like S = {Ai} and a position in S is denoted by a
matrix in collection (A). Before using a PSO algorithm, some symbols and the velocity (V) in Eqs. (3.1) and (3.2) need to be
redefined as follows:

3.1. Velocity (V)

The velocity of a PSO algorithm is defined as a collection of numerical pairs; the length of a velocity V, denoted by
‖V‖, equals to the number of numerical pairs. For example, a velocity V is given as V = ((ik, jk)), ik ∈ {1 . . .N}, jk ∈
{1 . . . T }, k↑‖V‖1 , the number of pairs (ik, jk) equals ‖V‖. N is the number of items and T is the number of planning periods.

3.2. Velocity plus velocity

The plus of two velocities is simply considered as a combinational operation on two velocities. In order to shorten
the length of the resulting velocity, the repetitive numerical pairs will be eliminated. For illustration, let V1 =
((1, 4), (2, 3), (5, 7)) and V2 = ((1, 3), (2, 3)), then V = V1 ⊕ V2 = ((1, 3), (1, 4), (2, 3), (5, 7)).

3.3. Velocity minus velocity

The subtraction of two velocities is simply considered as an elimination-and-recombination operation on two velocities.
First, the same numerical pairs are eliminated from both velocities. Then, the two velocities are combined together. For
illustration, let V1 = ((1, 4), (2, 3), (5, 7)) and V2 = ((1, 3), (2, 3)), then V = V1 	 V2 = ((1, 3), (1, 4), (5, 7)).

3.4. Position plus velocity

The plus of a position and a velocity is a continuous mutation on bits in a position according to corresponding numerical
pairs of a velocity. It can be seen from Fig. 2 that a production structure is presented, a position (matrix) is given out and a
velocity V is shown. Thematrix A is firstly transformed into A′ bymutating ‘1’ at position (1, 4). Then, a cumulativemutation
operation [24] at the position (2, 4) is performed to satisfy the feasibility constraint by changing ‘1’ into ‘0’. After that, A′ is
changed further into A′′ by substituting the value ‘1’ at (2, 2) with ‘0’.

3.5. Position minus position

The result of a subtraction between a position and another position is a velocity. The resulting velocity is obtained through
recording those different points of the two positions. For illustration, Fig. 3 showed the subtraction operation between A′
and A′′.
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3.6. Coefficient multiple velocity

Let c be a real coefficient and V be a velocity. The result of multiplication between c and V is obtained as a velocity
depending based on the following two cases of c.
– If |c| < 1, denote ‖cV‖ be the greatest integer number smaller than or equal to c‖V‖, then we can get c ⊗ V = ((ik, jk)),
k↑‖cV‖1 . For example, let c = 0.6 and V = ((2, 3), (2, 5), (3, 7)), then ‖V‖ = 3, c‖V‖=1.8, ‖cV‖ = 1, c ⊗ V = (2, 3).

– If |c| ≥ 1, then V and the length of V is kept unchanged. Hence, the appearance of repetitive numerical pairs is avoided
and the multiplication of c and V is simplified.

When using our algorithm, the inertial weight parameter ω should not be ignored. For one hand, if ω is a real number
between 0 and 1 then the formulas to execute the PSO algorithm are as Eqs. (3.3) and (3.4); if ω is a real number between
−1 and 0 then the formulas for running the PSO algorithm are as Eqs. (3.5) and (3.4). The priority relation between those
redefined mathematical operators is the same as before.

vi+1 = ω ⊗ vi ⊕ (C1 ∗ rand())⊗ (pbest � xi)⊕ (C2 ∗ Rand())⊗ (gbest � xi) (3.3)
xi+1 = xi � vi+1 (3.4)

vi+1 = (| ω | ⊗vi)	 ((C1 ∗ rand())⊗ (pbest � xi)	 (C2 ∗ Rand())⊗ (gbest � xi)). (3.5)
The pseudo code of PSO algorithm is shown in Table 2.

Table 2
The pseudo code of PSO algorithm

for i = 1 to PopSize
initialize Pop(i)
revise Pop(i) to a feasible candidate solution
assess Pop(i)
copy Pop(i) to P_local(i) and copy Pop(i)_value to P_local (i)_value

next i
record the best Pop(i) as Pbest

do while Iter_ID <= Max_Iteration
for j = 1 to PopSize
w = Rnd() ∗ 2− 1
Ifw >= 0 Then
call Multiple_wv()
call Plocal_sub_Pop()
call Pbest_sub_Pop()
call Multiple_C1_rand_V1()
call Multiple_C2_Rand_V2()
call V_add_V1_V2()

else
w = −w
call Multiple_WV()
call BL_sub_Pos()
call Multiple_CV()
call Multiple_CV()
call V1_add_V2()
call add_V()

end if
call Plus_Pos_V()

next j
for k = 1 to PopSize
update Plocal(k) and Plocal(k)_value
next k

update Pbest
check the improvement of Pbest
if Yes then

number = 0
else

number = number+ 1
end if
Iter_ID = Iter_ID+ 1
The stopping rule is reached?
Yes, stop and return Pbest.
No, loop

4. Experimental framework and simulation results

In this section, we present three computational experiments to test our algorithm (two small-sized problems and a
medium-sized problem). The platform of the experiments is a PC with a 2.8 GHz CPU and 1G RAM. This algorithm is coded
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Fig. 4. Two production structures of small-sized MLLS problems.

Fig. 5. The production structure used in experiment 3.

in Visual Basic 6.0. Two stopping rules are adopted. One is max-iteration rule and the other is no-prominent-improvement
rule. In all the experiments, we use a swarm of 60 particles, acceleration constants C1 = C2 = 2 and the maximal
velocity vmax = 0.1 × N × T . The max iteration is 500. If in 200 iterations the best achieved solution is not improved,
then the algorithm is stopped. We run 100 times for each experiment. Fig. 4A is a product structure used for the first
experiment, Fig. 4B is a product structure used for the second experiment, and Fig. 5 is a product structure [15] for the
last experiment.
The constant parameters used for small-sized problems are listed in Table 3. Those parameters for medium-sized MLLS

problem used in experiment 3 are randomly generated. In experiment 3, the length of planning horizon is 10. The results of
the small-sized problem are listed in Table 4 and the results of the medium-sized problem are listed in Table 5.
Through Tables 4 and 5, we can see that both the PSO algorithm and GA outperform the WW algorithm in terms of the

best achieved solution. In most cases, our algorithm is more stable than GA with comparatively less calculation time. Only
in the 6× 15 case our algorithm is somewhat less stable. In all cases, our algorithm obtained better results than those of GA
as we observe the best solution, the worst solution and the mean cost. All these experiments showed that our algorithm is
a feasible and effective method for solving the uncapacitated MLLS problem with assembly structure.

5. Conclusions and future study

In this paper, a PSO algorithm is proposed to solve the uncapacitated MLLS problems with assembly structure. Our
contribution is twofold: (1) all the mathematical operators in PSO formulas are redefined; (2) we provide a new way for
using a PSO algorithm to those researchers who work on MLLS problems. In our future study, a PSO algorithm suitable for
solving more complicated MLLS problems should be developed and the application scope should be further extended to
other similar research fields.
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Table 3
The constant parameters used for small-sized problems.

Item number Relation between items Fees per unit
Γ (i) C(i,Γ (i)) Holding cost Setup cost

1 0 0 1 130
2 1 1 2 120
3 1 3 1 25
4 2 2 2 30
5 2 4 3 30
6 3 2 1 40
7 3 1 1 130
8 1 2 2 120
9 8 1 1 25

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D1,t 32 41 148 36 120 28 32 12 30 10 32 41 148 36 120

Table 4
The simulation results of small-sized MLLS problems.

Problem Algorithm Best Worst Mean cost Std of cost Mean time (s)

6× 10 PSO 1493 1917 1560.7 84.4 4.2
GA 1493 2656 1904.89 248.63 5.6
WW 1707 1707 1707 0 <0.1

6× 12 PSO 1895 5565 2143.94 578.4 5.3
GA 1895 6446 2526.9 601.79 8.0
WW 2123 2123 2123 0 <0.1

6× 15 PSO 2546 8214 3664.73 1503.7 6.3
GA 2623 9170 3982.04 1305.2 10.7
WW 2909 2909 2909 0 <0.1

9× 10 PSO 2043 2877 2158.9 136.2 6.5
GA 2043 5813 2581.79 767.47 10.1
WW 2807 2807 2807 0 <0.1

9× 12 PSO 2522 9525 3057.8 935.7 7.2
GA 2522 9951 3887.2 1457.55 12.9
WW 3498 3498 3498 0 <0.1

9× 15 PSO 3448 12457 5951.9 2771.6 9.2
GA 3714 12966 8302.23 2906.44 16.3
WW 4834 4834 4834 0 <0.1

Table 5
The simulation results of medium-sized MLLS problem.

Algorithm Best Worst Mean cost Std of cost Mean time (s)

PSO 4921 13339 5938.28 2106.2 30.9
GA 4921 25037 9241.86 5012.88 33
WW 13207 13207 13207 0 0.1
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