6 research outputs found

    Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data

    Get PDF
    Background: Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [Trends Biochem Sci 38:30–37, 2013; Nat Rev Genet 14:9–22, 2013; Curr Opin Struct Biol 2014, 28C:112–121; Annu Rev Biophys 43:19–39, 2014]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [J Phys Chem B 114:5386–5403, 2010; Biophys J 79:1915–1927, 2000; Biophys J 91:1941–1951, 2006; Biophys J 79:1928–1944, 2000; Biophys J 86:4015–4029, 2004; Biophys J 97:3196–3205, 2009; PLoS One 7:e30024, 2012; BMC Bioinformatics 288 11(8):S2, 2010; Biophys J 106:1327–1337, 2014; Proc Int Conf Mach Learn 28:361–369, 2013], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. Results: Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. Conclusion: Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices

    Single-Molecule FRET to Measure Conformational Dynamics of DNA Mismatch Repair Proteins

    Get PDF
    Single-molecule FRET measurements have a unique sensitivity to protein conformational dynamics. The FRET signals can either be interpreted quantitatively to provide estimates of absolute distance in a molecule configuration or can be qualitatively interpreted as distinct states, from which quantitative kinetic schemes for conformational transitions can be deduced. Here we describe methods utilizing single-molecule FRET to reveal the conformational dynamics of the proteins responsible for DNA mismatch repair. Experimental details about the proteins, DNA substrates, fluorescent labeling, and data analysis are included. The complementarity of single molecule and ensemble kinetic methods is discussed as well

    The FRET-based structural dynamics challenge -- community contributions to consistent and open science practices

    Get PDF
    Single-molecule Förster resonance energy transfer (smFRET) has become a mainstream technique for probing biomolecular structural dynamics. The rapid and wide adoption of the technique by an ever-increasing number of groups has generated many improvements and variations in the technique itself, in methods for sample preparation and characterization, in analysis of the data from such experiments, and in analysis codes and algorithms. Recently, several labs that employ smFRET have joined forces to try to bring the smFRET community together in adopting a consensus on how to perform experiments and analyze results for achieving quantitative structural information. These recent efforts include multi-lab blind-tests to assess the accuracy and precision of smFRET between different labs using different procedures, the formal assembly of the FRET community and development of smFRET procedures to be considered for entries in the wwPDB. Here we delve into the different approaches and viewpoints in the field. This position paper describes the current "state-of-the field", points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and a list of resources that are openly available. To make further progress, we strongly encourage 'open science' practices. We hope that this position paper will provide a roadmap for newcomers to the field, as well as a reference for seasoned practitioners
    corecore