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Abstract

Single-molecule FRET measurements have a unique sensitivity to protein conformational 

dynamics. The FRET signals can either be interpreted quantitatively to provide estimates of 

absolute distance in a molecule configuration or can be qualitatively interpreted as distinct states, 

from which quantitative kinetic schemes for conformational transitions can be deduced. Here we 

describe methods utilizing single-molecule FRET to reveal the conformational dynamics of the 

proteins responsible for DNA mismatch repair. Experimental details about the proteins, DNA 

substrates, fluorescent labeling, and data analysis are included. The complementarity of single 

molecule and ensemble kinetic methods is discussed as well.

1. INTRODUCTION

1.1 Single-Molecule FRET to Measure Protein Conformation

Understanding how changes in protein conformation are linked to function is a key step in 

modeling molecular mechanisms for many enzymes. Among experimental methods that 

measure protein conformational changes, fluorescence resonance energy transfer (Förster 

resonance energy transfer, FRET) has proven to be of great use for sensitive detection of 

protein dynamics in physiologically relevant settings. FRET measurements are made by 

engineering macromolecules with two fluorophores attached at defined locations and 

measuring spectrally resolved fluorescence emission from these probes. Distance-dependent 

interaction between these fluorophores alters the overall emission spectrum, allowing the 

changes in signal to be interpreted as changes in molecular conformation. With proper 

corrections for systematic effects, these signals can be quantitatively related to nanometer 

dimensions, leading to the description of FRET as a “spectroscopic ruler” (Stryer & 

Haugland, 1967).

The power of FRET measurements to reveal dynamic protein conformational changes took a 

tremendous leap forward two decades ago when signals were successfully detected from a 

single molecule; this methodology is now called single-molecule FRET (smFRET) (Ha et 
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al., 1996). Measuring FRET signals from single molecules avoids the averaging that 

dominates ensemble biochemical approaches. Single-molecule studies provide access to 

heterogeneous behaviors and the ability to monitor the dynamics of unsynchronizable 

populations of macromolecules, making it an ideal tool for investigating the role of 

conformational dynamics in enzyme function. Below, we describe single-molecule FRET 

assays that we have developed to study conformational dynamics of DNA mismatch repair 

(MMR) proteins.

1.2 Overview of Our DNA MMR Protein Experiments

Living organisms have a widely conserved system of proteins that locate and respond to 

DNA base–base mismatch and insertion errors made during replication, as well as damaged 

bases in DNA. The system, known as MMR, either repairs mismatches or leads to the 

activation of checkpoints that promote cell-cycle arrest or apoptosis in the case of damage 

(Bignami, Casorelli, & Karran, 2003; Fedier & Fink, 2004; Karran, Offman, & Bignami, 

2003). MMR proteins play a fundamental role in genome stability and cellular homeostasis 

(Modrich & Lahue, 1996), and mutations in these proteins are associated with 

carcinogenesis (Heinen, 2016; Peltomaki, 2016).

MMR proteins MutS and MutL are responsible for detecting DNA mismatches and initiating 

the repair process. Both MutS and MutL homologues have DNA binding and ATPase 

activities that are essential for MMR in vivo (Iyer, Pluciennik, Burdett, & Modrich, 2006; 

Kunkel & Erie, 2005). Both proteins are homodimers in prokaryotes and heterodimers in 

eukaryotes. Here, our main goal is to describe smFRET methodology we have applied to our 

studies of the homodimeric MutS and MutL proteins from Thermus aquaticus (Taq). The 

mechanism of the Taq MMR system appears similar to that in most other species (with the 

notable exception of Escherichia coli), and therefore, we will simply call the proteins MutS 

and MutL in the following text.

The current consensus about key events occurring in MMR initiation is that MutS slides 

along double-stranded DNA searching for the rare mismatched or damaged base. It binds to 

mismatches (Fig. 1), at which point ATP induces conformational changes in MutS that can 

result in a mobile clamp state that moves along the DNA. This ATP and mismatch activated 

state of MutS has enhanced interactions with MutL, resulting in MutL stabilizing MutS at 

the mismatch (Groothuizen et al., 2015; Qiu et al., 2015; Schofield, Nayak, Scott, Du, & 

Hsieh, 2001). Interactions between the MutS-activated MutL complex and the replication 

processivity clamp (β-clamp in prokaryotes and PCNA in eukaryotes) can activate MutL to 

incise the newly replicated strand up to hundreds of bases from the mismatch both distally 

(preferential) and proximally to the mismatch (Kadyrov, Dzantiev, Constantin, & Modrich, 

2006; Kadyrov et al., 2007; Pluciennik, Burdett, Lukianova, O’Donnell, & Modrich, 2009). 

MutS then stimulates exonucleases to begin degrading the newly synthesized strand from the 

MutL-created nick (or possibly from preexisting nicks/gaps in the strand). The resulting gap 

that typically extends past the mismatch is then resynthesized and remaining nicks are 

ligated to complete repair (Genschel & Modrich, 2003, 2009; Iyer et al., 2006; Kunkel & 

Erie, 2005, 2015; Liberti, Larrea, & Kunkel, 2013; Morita et al., 2010; Nick McElhinny, 

Kissling, & Kunkel, 2010; Pavlov, Mian, & Kunkel, 2003).
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Initiation of MMR involves an ordered choreography of interactions between DNA, MutS, 

and MutL coupled with the ATPase reaction. Many studies using X-ray crystallography 

(Lamers et al., 2000; Natrajan et al., 2003; Obmolova, Ban, Hsieh, & Yang, 2000; Warren et 

al., 2007), AFM (Wang et al., 2003), and ensemble biochemistry (Fishel, 2015; Iyer et al., 

2006; Kunkel & Erie, 2005) have suggested that these interactions involve substantial 

conformational changes in both the DNA and the proteins, but the dynamics of these events 

have been difficult to resolve. Our studies of these interactions at the single-molecule level 

have allowed us to characterize in detail large DNA bending transitions, conformational 

changes within the MutS mismatch binding domains that are dependent on ATP and the 

mismatch, as well as MutL interactions that alter these conformational trajectories. These 

observations, coupled with data from ensemble transient kinetics, have yielded a highly 

detailed view of the molecular mechanisms used by this enzyme system to identify, verify, 

and begin repairing DNA mismatch errors. The goal here is to describe these experimental 

smFRET approaches. The application of a broader range of single-molecule methods to 

study DNA MMR is reviewed elsewhere (Erie & Weninger, 2014). The studies described 

here are widely applicable to other biological systems in which the proteins can be purified 

and fluorescently tagged.

2. METHODS OF ACQUIRING FRET SIGNALS FROM T. aquaticus DNA MMR 

PROTEINS

For a FRET experiment, two fluorophores with distinct spectral characteristics must be 

attached to the molecule of interest (Fig. 2). The fluorophore with the shorter wavelength 

emission (called donor) is excited with an external light source. If the longer wavelength 

fluorophore (called acceptor) is further from the donor than the effective FRET range, then 

no FRET occurs and only donor emission is observed. FRET processes can excite the 

acceptor when it is within about 7–8 nm of the donor, which then decreases the donor 

emission and increases the acceptor emission. The FRET efficiency is defined as E = IA/(ID 

+ IA), where ID and IA are the donor and acceptor emission intensities. FRET efficiency is a 

useful parameter because it is related to the distance d between the fluorophores by E = 

1/(1+(d/R0)6), where R0 (the Förster radius) sets the scale of the FRET effect. R0 is a 

function of the properties of the fluorophores and typically ranges about 4–6 nm. The 

dependence on the sixth power of distance makes FRET very sensitive in the R0 range (Fig. 

2B).

Our experiments utilize total internal reflection fluorescence (TIRF) microscopy to observe 

MMR proteins interacting with DNA tethered to the surface of a flow cell. Methodological 

details of these experiments are described below.

2.1 Proteins

We work with MMR proteins from the thermophile Taq, which have proved to be stable in 

vitro and amenable to structure–function analysis by a wide variety of techniques, including 

smFRET. The Taq MutS monomer is 811 amino acids with a molecular weight ~90 kDa, and 

the Taq MutL monomer is 532 amino acids with a molecular weight ~59 kDa. MutS has one 

native cysteine that is mutated to alanine and, for the studies described below, methionine 88 
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is replaced with cysteine for labeling the DNA binding domain. Neither mutation alters 

DNA binding or ATPase rates (Sharma, Doucette, Biro, & Hingorani, 2013). Taq MutL has 

three native cysteines and none labeled when treated with maleimide dye; consequently, 

introduction of a surface-exposed cysteine is sufficient for site-specific labeling of MutL. 

Mutations were performed in the overexpression plasmid using the Quickchange II XL kit 

(Agilent). Note that Taq genes are GC rich, which makes PCR and sequencing difficult and 

less reliable. Multiple reactions are necessary to confirm successful manipulations.

2.1.1 Preparation of Taq MutS

Expression: Express MutS in pET3a plasmid in BL21-DE3 E. coli in LB media including 

50 μg/mL Ampicillin at 37°C until OD 0.5 and then add IPTG to 0.1 mM. After expression 

for 3 h, collect cells by centrifugation.

Purification: Resuspend cells in lysis buffer (20 mM HEPES–NaOH pH 7.8, 100 mM 
NaCl, 1 mM EDTA, 0.1 mM DTT, 1 mM PMSF, protease inhibitor cocktail), sonicate to 

lyse, centrifuge at 40,000 rpm for 30 min at 4°C (Beckman MLA-80 Rotor), collect 

supernatant and heat to 65°C for 30 min (Taq MutS is thermostable), cool to room 

temperature, centrifuge at 8000 rpm for 20 min at 4°C (Eppendorf F34-6-38 Rotor), collect 

supernatant and add ammonium sulfate (36.6 g/100 mL supernatant, final ~60% saturation), 

agitate 4°C for 15 min, centrifuge 10,000 rpm for 20 min 4°C (Eppendorf F34-6-38 Rotor), 

resuspend pellet in Tris-50 buffer (20 mM Tris–HCl pH 7.8, 50 mM NaCl, 0.5 mM DTT), 

and dialyze against the same buffer with several changes. Load sample onto Hi-TRAP 

Sepharose Q column, wash with Tris-50 buffer, and then elute with an NaCl gradient to 1 M 
(MutS elutes around 150–300 mM NaCl). Dialyze the protein against Tris-50 buffer with 

several changes. Load onto a MonoQ column. Wash with Tris-50 buffer and then elute with 

an NaCl gradient to 1 M (MutS elutes around 200–300 mM NaCl). Dialyze in Taq storage 

buffer (20 mM HEPES–NaOH pH 7.8, 1 mM EDTA, 10% glycerol, 150 mM NaCl, 0.1 mM 
DTT) and snap freeze for storage at −80°C.

Labeling: To label MutS with maleimide fluorophores, exchange storage buffer with label 

buffer (20 mM phosphate, pH 7.2, 150 mM NaCl) using a Sephadex G-25 column (Nap5, 

PD10, GE Biosciences). Add TCEP at 10 × concentration over free cysteines for 5 min at 

room temperature. Then add maleimide reactive dye at 10 × concentration over free 

cysteines. Incubate 1 h to overnight. Remove unreacted dye using the Sephadex G-25 or 

G-50 desalting column or by dialysis against Tris-50 buffer.

2.1.2 Preparation of Taq MutL

Expression: Express MutL from pET17b plasmid in BL21-DE3 E. coli in LB media 

including 50 μg/mL Ampicillin at 37°C until OD 0.5, and then induce the expression with 

0.5 mM IPTG. After expression for 3–4 h, collect cells by centrifugation.

Purification: Suspend cells in ice-cold lysis buffer (20 mM Tris–HCl pH 7.5, 0.5 M NaCl, 5 

mM imidazole) augmented with protease inhibitors and PMSF. Sonicate on ice until cells are 

disrupted. Centrifuge at 35,000 rpm for 30 min (Beckman MLA-80 Rotor). Add supernatant 

to Ni-NTA agarose resin equilibrated in lysis buffer. Incubate 1 h at 4°C. Wash the Ni-NTA 
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column in lysis buffer+60 mM imidazole. Elute in lysis buffer+300 mM imidazole (dimeric 

MutL elutes at ~300 mM imidazole). Dialyze against lysis buffer without imidazole 

overnight. Freezing before labeling with liquid nitrogen is acceptable.

Labeling: To label MutL with maleimide fluorophores, exchange buffer with label buffer 

(20 mM phosphate pH 7.2, 500 mM NaCl) using a P6 column (Bio-Rad Bio-Gel P-6DG). 

Note that Taq MutL binds nonspecifically to Sephadex G-25 matrix, but flows through P6 

gel. Add TCEP at 10 × concentration over free cysteines for 5 min at room temperature. 

Then add maleimide reactive dye at 10 × concentration over free cysteines. Incubate 1 h to 

overnight. Remove unreacted dye from MutL using the P6 desalting column in labeling 

buffer. Use immediately, freezing the labeled protein leads to aggregation for MutL.

2.2 Preparation of DNA Substrates

smFRET experiments have been performed with either 50 nucleotide (nt) or 550 nt dsDNA 

substrates. Both lengths of DNA include a biotin on one end to allow immobilization on a 

streptavidin-coated surface. The 550 nt dsDNA has a digoxin on the other end to allow end 

blocking by treatment with digoxigenin (dig) antibody. The 50 nt dsDNA substrate can be 

constructed from oligos ordered from commercial vendors. A 50 nt oligo with a 5′-biotin 

and a 3′-donor fluorophore is annealed to a 19 nt oligo with sequence complementary to the 

3′-end of the 50 nt oligo (except a mismatched base at position 9). This 19 nt oligo has an 

acceptor fluorophore on its 3′-end that makes a FRET pair 19 bases apart with a 

mismatched base centered in between. A 31 nt oligo is annealed to fill the remaining ssDNA 

gap.

A more complex process is required to construct the 550 nt dsDNA substrate. PCR of a 

pUC-VSR plasmid template using oligos containing 5′-biotin and dig modifications is used 

to amplify a 550 nt section of the plasmid and introduce the biotin/dig moieties. A nicking 

endonuclease (Nt.BbvCI) is used to remove a central segment of one strand. Then an oligo is 

annealed to fill that gap. The oligo may include a mismatched base and fluorophores if 

desired. Ligase is used to seal the remaining nicks. A detailed protocol is given below:

Part 1—PCR and nicking

1. PCR

a. Prepare PCR reactions: 5 μL of 10 × polymerase buffer, 50 pmol F1-

biotin primer, 50 pmol R2-primer*, 50 ng pUC-VSR plasmid, water to 

49 μL, and 1 μL Taq polymerase (Invitrogen AccuPrime Taq DNA 

Polymerase) (*use different end-modified primers for different types of 

end-modified DNA; our studies include R2 (Normal) primer, LacO 

primer, and Dig primer).

b. Run PCR: 95°C for 1 min; [95°C for 1 min—55°C for 33 s—69°C for 

50 s]repeat 32×; 69°C for 5 min, 55°C for 5 min.

c. Purify PCR product with PCR purification kit. Elute in 40 μL kit elution 

buffer. This is homo-duplex DNA.
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2. Nicking

a. Prepare nicking reaction with 5 μL 10 × NEB buffer 4, 1 μg PCR 

product DNA, 45 μL water, 5 μL Nt.BbvCI (NEB, Cat# R0632S).

b. Incubate 37°C for 16 h.

Part 2—Gapping, phosphorylation, annealing, and ligation

1. Gapping:

a. Add 250 μL (5 × volume) of Buffer PBI (Qiagen) to each nicked 

sample

b. Incubate samples at 80°C for 20 min (heat inactivates any remaining 

Nt.BbvCI and also melts short nicked pieces away from 550 mer)

c. Immediately spin each reaction through a QIAquick spin column

d. Transfer to a new collection tube

e. Add 750 μL of buffer PE and spin column (containing ethanol)

f. Repeat spin in new collection tube to remove residual ethanol

g. Transfer to a new collection tube (with cap)

h. Add 30 μL of Buffer EB; allow to sit 1 min; spin to elute DNA

2. Phosphorylation: (If your oligo is commercially phosphorylated, skip this step. 

The yield of fully ligated product will be reduced if the oligo is not ordered 

phosphorylated.)

a. Prepare your phosphorylation reactions with 20 pmol DNA, 2 μL 10 × 

kit reaction buffer, 0.2 μL ATP (100 μM stock), 19 μL water, 1 μL PNK 

(T4 Polynucleotide Kinase, Fermentas, Cat# EK0031)

1. Incubate 37°C for 1 h and then 70°C for 5 min (denature 

enzyme). There is no need for purification at this stage as it 

will result in significant loss of DNA

3. Annealing

a. Prepare annealing reactions. Mix gapped DNA with ~1.5 × mismatch-

containing oligo. Note: excess oligo will result in multiple dyes on a 

single DNA molecule

b. Anneal at 70°C for 5 min and then ramp down temperature from 70°C 

to 16°C at 1°C per min (or let it cool down naturally to room 

temperature in heat block)

4. Purify the annealed product using a PCR purification kit to remove extra oligo in 

the reaction. Elute in 45 μL elution buffer

5. Ligation
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a. Add 5 μL of E. coli DNA ligase buffer and 1.5 μL of E. coli DNA ligase 

to each reaction

b. Incubate at 16°C for 20 h

c. PCR purify the first ligation product (elute in 45 μL of elution buffer) 

and set up the second ligation reaction

d. Repeat three times

e. When the third ligation reaction is done, purify the final 550 nt DNA 

using a PCR purification kit

2.3 Considerations Related to Fluorescent Labeling

Several fluorescent tags are commercially available for labeling oligonucleotides (e.g., 

TAMRA, the Cy dyes, Alexa dyes). When choosing which specific fluorophores to use, it is 

important to select dyes with high extinction coefficients and quantum yields so that they 

can be easily detected at the single-molecule level. Also, the dyes’ excitation and emission 

spectra should be compatible with the optical setup such that independent excitation and 

emission detection is possible for each dye. Donor–acceptor dye pairs commonly used in our 

smFRET experiments include Alexa 555-Alexa 647, Alexa 555-Cy5, TAMRA-Cy5, and 

Cy3-Cy5.

There are several unknown parameters that can complicate dye selection. Notably, the 

structures of several commercial fluorophores are proprietary; thus, any perturbations they 

may introduce into the DNA remain unknowable. Also, fluorophores that serve as effective 

reporters in bulk experiments may be prone to blinking or bleaching in single-molecule 

experiments, making them poor choices for conformational dynamics studies using 

smFRET. Finally, some dyes are prone to interactions with the DNA (e.g., stacking with the 

bases), which may change their fluorescence properties in ways that do not depend on DNA 

or MMR protein conformational changes.

Several chemical strategies exist to link fluorophores to DNA. Labeling the 5′- or 3′-ends of 

the DNA is one option; however, being limited to only the ends of the DNA may be 

problematic. While internally labeling DNA oligonucleotides allows flexibility in choosing 

labeling positions, there are fewer commercially available options for fluorophores. Two 

major types of internal labels are: (1) dyes attached covalently to thymine bases via a 

flexible linker extending from the major groove in the DNA, and (2) dyes (e.g., the Cy dyes) 

that can be incorporated directly into the DNA backbone. Note that these fluorophores are 

rigidly locked into a specific orientation relative to the DNA backbone as they are covalently 

attached at both ends, whereas fluorophores on a flexible linker have more conformational 

freedom. The Förster radius of a given FRET pair of fluorophores depends, in part, on the 

relative orientation of the transition dipoles of the two fluorophores (Lakowicz, 2006). Thus, 

limiting the conformational freedom of both fluorophores may lead to unpredictable changes 

in FRET due to changes in their relative orientations. In general, at least one freely rotating 

dye (i.e., those attached to flexible linkers) is recommended.
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It is crucial that labeling positions are chosen beyond the binding footprint of the protein 

because the fluorescent properties are sensitive to changes in the local chemical 

environment. The crystal structure of Taq MutS shows protein–DNA contacts as far as 8 

nucleotides from the mismatch (Fig. 1) (Obmolova et al., 2000); thus, fluorescent labels are 

placed outside this range.

2.4 TIRF Microscopy

Homemade flow cells constructed between a quartz microscope slide and a glass cover slip 

are built and samples are tethered to the surface through a biotin–streptavidin interaction. A 

quartz prism with index-matching oil at the contact with the quartz slide allows laser beam 

illumination to be directed to the sample above a microscope objective at an angle 

sufficiently steep that total internal reflection occurs at the quartz-buffer interface (Fig. 3A). 

The resultant evanescent field is used to excite fluorophores within a couple hundred 

nanometers of the interface. The illuminated area is imaged with a microscope objective 

onto an emCCD camera. A DualView image splitter (Photometrics) is used to split the 

image into two copies where each contains emission from either the donor or the acceptor 

spectral bands. These spectrally filtered images are relayed side by side onto the emCCD. 

Intensity vs time traces for spots identified to contain fluorophores are extracted from 

minute long movies. Detailed descriptions of flow-cell construction, sample immobilization, 

microscopy hardware, and extraction of single-molecule intensity vs time traces in donor 

and acceptor spectral emission bands are provided elsewhere (Choi, Weninger, & Bowen, 

2012).

2.5 Overview of FRET Signals Reporting Different Conformational Aspects of DNA MMR 
Protein Complexes

We used smFRET to deduce conformations of several different aspects of the MutS:DNA 

complex (Fig. 4). Using a donor and acceptor attached to DNA (forming a FRET pair with 

the mismatched base halfway in between; Fig. 4A), MutS induced bending at the 

mismatched base can be measured (DeRocco, Anderson, Piehler, Erie, & Weninger, 2010; 

DeRocco, Sass, Qiu, Weninger, & Erie, 2014; Sass, Lanyi, Weninger, & Erie, 2010). When 

the DNA is straight, the fluorophores are further apart than when the DNA is kinked at the 

mismatch. We also labeled the DNA binding domain of dimeric MutS (domain I) with a 

mixture of donor and acceptor dyes (Fig. 4B). Single-molecule measurements allowed us to 

specifically select the fraction of dimers with one donor and one acceptor and measure 

FRET from this mixed-fluorophore population. smFRET experiments were designed to 

detect conformational transitions within the DNA binding domains of MutS in the absence 

or presence of DNA mismatches (Qiu et al., 2012). Finally, a third label combination, where 

a donor is on MutS and an acceptor is on DNA 9 nt away from a mismatched base (Fig. 4C), 

provided information on the position of MutS near a mismatch (Qiu et al., 2012, 2015). 

Labels in the N-terminal domain of dimeric MutL were also used to provide smFRET 

signals addressing the configuration of these domains as MutL interacts with MutS to 

initiate repair.
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3. DATA ANALYSIS

3.1 Quantitative vs Qualitative Interpretation of FRET as Distance

Quantitative conversion of measured FRET ratios into the distance between the donor and 

acceptor fluorophores is possible. It is critical to address systematic issues related to the 

efficiency of the instrumentation for detection of fluorescence emission as well as the impact 

of the local molecular environment on mobility or quantum yields of the donor and the 

acceptor after they are attached to the DNA or protein molecules (McCann, Choi, Zheng, 

Weninger, & Bowen, 2010). smFRET is being developed as a quantitative tool for structural 

biology applications by making such systematic corrections to the FRET measurements 

(Brunger, Strop, Vrljic, Chu, & Weninger, 2011; Choi et al., 2010). In contrast, for our DNA 

MMR studies, we have not interpreted FRET as indicating a quantitative distance, but rather 

have focused on analysis of the kinetics of transitions among distinct states (Fig. 3B).

3.2 Edge Detection in Time Traces for Kinetics

Given proper surface coverage by a sample of labeled oligonucleotide and protein, a single 

movie collected as described above may contain fluorescence information for over 100 DNA 

molecules. While already a large amount of information, the amount of data to analyze 

multiplies with varying experimental conditions and replicate experiments, thus an 

automated computational analysis approach vital. Automated analyses, however, require 

verification to identify unexpected patterns and check for systematic errors. Below, a 

computational analysis pipeline is presented that systematically applies an analysis routine 

and outputs the results for a user interface.

3.2.1 Extracting the Fluorescence Time Traces of Individual DNA Molecules—
Typical experiments produce movies made up of a series of approximately 1000 frames 

acquired at typically 10 Hz. As mentioned above, donor emission and acceptor emission 

from an area being imaged are recorded on side-by-side halves of the camera. By initially 

exciting only the acceptor dye, local maxima on the acceptor half of the image can be 

identified. These same locations mapped to the other half of the frame should locate the 

emissions from the donor dye. To determine the relative offset between the two halves of the 

image, broadband emission fluorescent beads fixed on a slide surface that appear in both 

halves of the image are imaged in separate calibration runs. These calibration images allow 

an experimentally determined offset to be determined, which is then applied to the 

experimental movies.

For each DNA molecule, the sum of the fluorescence intensities of a 3 × 3 pixel square 

centered on the local maxima pixel coordinates for the donor and acceptor dyes are 

determined. The local background intensity is subtracted, and those foci below a user set 

minimum threshold intensity are discarded. Foci too close to the camera edges or another 

focus are also discarded. For those foci that remain, the intensity is determined for each 

movie frame for both the donor and acceptor as the sum of the 4 highest pixels in the 3 × 3 

square, ultimately resulting in a “time trace” of the donor and acceptor fluorescence 

emission intensities as a function of time (Fig. 3B, second row). Single-labeled donor or 

acceptor samples can be used to determine the fixed fraction of the emission that “leaks” 
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into the unintended channel. This fixed fraction that is a function of the fluorophore 

emission spectra and the optical filters can be subtracted from the acquired data.

3.2.2 Smoothing the Donor and Acceptor Time Traces Using the Chung–
Kennedy Filter—Fluorescence intensity time traces have substantial noise deriving 

primarily from the shot noise of detection. Several methods exist to smooth noisy data, such 

as box-car averaging, but most of these smoothing methods do not preserve sharp edges. To 

overcome this limitation, Chung and Kennedy developed a nonlinear smoothing algorithm 

designed specifically to smooth data while preserving edges (Chung & Kennedy, 1991; 

Haran, 2004). This algorithm smoothes data containing transitions (Fig. 5A) by first 

determining the averages for windows of data of various sizes on either side of a given data 

point (dubbed the “forward” and “backward” average windows, Fig. 5B). To preserve edges, 

“forward” and “backward” averages that contain transitions are given less weight in the 

overall average. The statistical weights assigned to the “forward” and “backward” averages 

are determined as follows: The standard deviations for windows of data on either side of the 

data point being smoothed (referred to as the “forward” and “backward” predictor windows, 

Fig. 5C) are determined. The inverse of these standard deviations raised to a user-defined 

exponential term p is then used to calculate the statistical weights.

For example, consider a data point (at time t) with a transition occurring within the forward 

predictor window but not in the backward predictor window (Fig. 5A). The forward 

predictor window (Fig. 5C, green) would have a large standard deviation relative to the 

backward window (Fig. 5C, red). Thus, the averages from the forward average windows 

(Fig. 5B, green) would be assigned lower weight in the overall average, while the averages 

from backward average windows (Fig. 5B, red) would be assigned a larger statistical weight. 

This type of smoothing preserves transitions in the forward predictor window.

Importantly, in this approach the average windows and the predictor windows need not be 

the same size, nor is it necessary to use only one window size for each type of window. In 

fact, transitions that occur on different timescales can be preferentially preserved using 

windows of various sizes. Furthermore, the statistical weight term can be raised to the power 

of an empirically determined value (p) to exaggerate the different contributions of the 

forward and backward window averages. Thus, the input parameters of the average window 

size(s), predictor window size(s), and exponent term(s) can be defined by the user, and the 

optimal values in a given application can be empirically determined. Over filtering (i.e., 

introduction of false transitions) can be minimized by optimizing these input parameters.

When properly applied to the donor and acceptor time traces, the signal-to-noise ratio is 

significantly improved (Fig. 3B, third row), and transitions remain clear. Notably, in single-

molecule FRET experiments, transitions in the donor and acceptor traces are expected to be 

anticorrelated (i.e., if the donor intensity increases, the acceptor intensity should 

simultaneously decrease, and vice versa). Because transitions in the donor and acceptor 

traces are expected to be simultaneous, the Chung–Kennedy smoothing algorithm can be 

improved by using the sum of the predictor window standard deviations for the both the 

donor and the acceptor to determine the statistical weights. As a result, simultaneous donor 
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and acceptor intensity transitions will be more strongly preserved compared to uncorrelated 

donor and acceptor changes in intensity (Chung & Kennedy, 1991; Haran, 2004).

3.2.3 Screening Time Traces for Data Quality—Time traces of insufficient quality 

should be discarded from analysis. There are several reasons a time trace or portions of a 

time trace may not be worth analyzing. For example, the detected fluorescence emission 

intensities may be too low to reliably detect changes in intensity, or they may be too high to 

represent emission from only one molecule. More commonly, either the donor or the 

acceptor fluorophore (or both) may permanently or temporarily lose its fluorescence 

properties (i.e., bleach or blink) during data acquisition.

To identify unanalyzable regions of time traces, the fluorescence intensity of each data point 

can first be checked against user-defined minimum and maximum thresholds. To assess for 

bleaches or blinks in the remaining data, the average and standard deviation of a moving 

seven-point window can be used to determine a 95% confidence interval for each data point. 

If this interval includes zero, the data point can be considered as part of a bleaching or 

blinking event and discarded from analysis. Time traces containing both analyzable and 

unanalyzable regions may contain useful information (e.g., prior to photobleaching). These 

regions can then be further analyzed to determine their quality.

3.2.4 Calculating FRET and Identifying Transitions in the FRET Time Traces—
Analyzable regions of the remaining donor and acceptor time traces can then be used to 

calculate single-molecule FRET efficiency using the equation E = IA/(ID + IA), where ID and 

IA represent the background and leakage corrected, fluorescence emission intensities of the 

donor and acceptor fluorophores, respectively (DeRocco et al., 2014; Lakowicz, 2006; Qiu 

et al., 2012, 2015; Sass et al., 2010). The resulting FRET time trace (Fig. 3B, fourth row) 

contains several pieces of information: (1) the FRET efficiency at each point in time; (2) the 

dwell time of a given FRET state provides kinetic information, such as the characteristic 

lifetimes associated with each state; and (3) the transitions provide insight into the preferred 

pathways of conformational changes. To extract this information, it is crucial to identify the 

time point at which the FRET time trace undergoes a transition.

Several methods exist to detect transitions in data (Blanco & Walter, 2010; Greenfeld et al., 

2015; McKinney, Joo, & Ha, 2006; Shuang et al., 2014; van de Meent, Bronson, Wiggins, & 

Gonzalez, 2014). Applying a transition detection method at different levels of stringency can 

minimize misidentification of transitions, as transitions that withstand more stringent 

thresholds are more likely to be “real.” Comparing the results of multiple methods can also 

help to overcome the limitations of using just one technique, as different detection methods 

will be better suited for detecting different types of changes (e.g., short- vs long-lived states) 

and will have different limitations. Edges detected by multiple methods at multiple 

stringency levels can then be assigned a higher confidence score. Presented here are two 

transition detection methods that can be independently applied at multiple thresholds to 

smFRET data.

Method 1: The Gaussian kernel method (Sass et al., 2010): Mathematically, transitions in 

continuous functions can be identified by finding inflection points (i.e., maxima and minima 
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in the first derivative of the time trace). Unfortunately, the FRET time traces are made up of 

discrete data points that have many apparent inflection points due to the significant noise in 

the signal. These issues can be circumvented by first convolving the FRET time traces with a 

Gaussian kernel of various widths and subsequently detecting inflection points in the 

convolved data. To ensure only “real” transitions are kept, a threshold can be incorporated. 

By changing the rigor of the threshold, the remaining “real” transitions can also be scored 

for confidence.

Method 2: The Chung-Kennedy method: The previously described smoothing algorithm 

developed by Chung and Kennedy uses increases in the predictor windows’ standard 

deviations to calculate statistical weights (Chung & Kennedy, 1991; Haran, 2004). These 

increases in standard deviation can also be used to detect transitions in the FRET time traces 

as we describe here.

Consider a data point at time t with a transition occurring between time t+2 and t+3 (Fig. 6). 

Using a predictor window of four data points, the standard deviation of both the forward and 

backward predictor windows can be calculated at each value of t. (Fig. 6 depicts these 

calculations for t − 2 to t+7.) In this example, the standard deviation of the forward predictor 

window at time t is at a local maximum. This maximum also occurs in the backward 

predictor window at time t+5 because both these windows contain the same range of data 

points. Accordingly, transitions can be detected by finding the midpoint between local 

maxima in the forward and backward predictor windows. To ensure only “real” transitions 

are kept, only the highest percentile local maxima are considered. By changing this 

percentile, the transitions can be scored for confidence. The most common source of false 

positives is bleaching and blinking events where either the donor or the acceptor 

fluorescence intensity is approximately zero. Regions of data previously identified as 

unanalyzable (i.e., bleaches and blinks) can be assigned a constant FRET not observed in the 

experiment, which eliminates their standard deviations and allows this transition detection 

method to function. Finally, a true change in FRET involves anticorrelated transitions in the 

donor and the acceptor signals (Haran, 2004). Including requirements that such 

anticorrelation be present above a threshold further aids confident identification of FRET 

transitions without falsely including bleaching and blinking events.

3.2.5 Alignment and Confirmation of Transitions in the FRET Time Traces—
Typically, the timing of each transition identified by both methods is in agreement; however, 

the two described methods occasionally produce slightly disparate results. In these instances, 

any transitions occurring within 0.3 s can be empirically aligned taking the weighted average 

of the time detected by each method. The weights used in this average can be determined 

using the confidence scores provided by each method.

Notably, both methods described here require user input to choose the appropriate 

thresholds. In the event that transitions are being missed (false negatives), the thresholds 

should be reduced. More often false transitions are identified. To test the significance of each 

transition, the FRET efficiency between each transition can be averaged, and the averages of 

adjacent FRET states can be subjected to a t-test. If two states are not statistically 
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significantly different from one another (p level 0.05), then the transition between the two 

states can be identified as a false positive and discarded.

3.2.6 User Interaction and FRET-TACKLE—In the analysis described so far, the user is 

only required for the initial input parameters, such as smoothing windows and transition 

detection thresholds; the rest of the analysis can be completed by a computer in batch. Upon 

completion of the batch analysis, the computationally determined transitions can be verified, 

and any remaining false positives in each molecule’s FRET time trace can be discarded by 

hand. This process, though tedious, can be crucial to recognizing patterns or detecting 

systematic errors in the computational approach.

Once the transitions have been determined, FRET-TACKLE (FRET Transition Analysis 

Coupled with Kinetic Lifetime Evaluation) analysis can extract the pertinent mechanistic 

information from the compiled data (DeRocco et al., 2014; Sass et al., 2010). In this method, 

distinct molecular conformations are identified by their characteristic FRET and kinetic 

lifetime properties. This approach allows molecular states with the same FRET but distinct 

kinetics to be distinguished.

3.3 Modeling DNA MMR Complex Kinetics From smFRET Measurements

Analysis of the distribution of FRET efficiencies, the characteristic lifetimes, and the 

preferred transitions reveals conformational, kinetic, and pathway preference information for 

the protein:DNA complexes being studied, which can provide mechanistic insights. Sass et 

al. used smFRET measurements of Taq MutS induced bending at a GT mismatch to deduce 

that as many as six different conformations with different degrees of bending were sampled 

with complex kinetics (Sass et al., 2010). Some of these states had overlapping FRET levels, 

but were distinguishable by their lifetimes that varied by 20-fold and rates of intercoversion 

that differed by 2 orders of magnitude. From detailed modeling of the quantitative 

measurements of lifetimes of the states and their probabilities of making each possible 

transition, landmarks in the free energy landscape of the MutS interaction with a DNA 

mismatch could be deduced (DeRocco et al., 2014; Sass et al., 2010).

Using smFRET between MutS domain I donor and an acceptor 9 bases away from a DNA 

mismatch (Fig. 7A), Qiu et al. measured an ATP-dependent sequence of conformational 

changes that occurred during conversion of mismatch-bound MutS into a state of MutS that 

leaves the mismatch and slides along the DNA (Qiu et al., 2012). MutS bound to a mismatch 

in a configuration that yielded FRET ~0.7 (Fig. 7B and C). A precise kinetic pathway of 

states was observed in the subset of molecules that eventually converted to sliding clamps in 

the presence of ATP.

Before sliding away from the mismatch, a transition to an intermediate state near FRET 0.5 

occurred (Fig. 7B and C). Kinetic analysis of the lifetimes of the FRET 0.7 and FRET 0.5 

lifetimes indicated that these states were significantly different. Measurements of 

intraprotein FRET between donor and label on the two DNA binding domains of the MutS 

dimer confirmed this two-step process (Qiu et al., 2012). The histogram of the lifetimes of 

many occurrences of the 0.5 FRET state fit well to a single exponential decay with lifetime 

of 0.6 s, suggesting a single-step conformational change accounted for the change in FRET 
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level (Fig. 7D, lower). In contrast, the distribution of lifetimes of the 0.7 FRET state is 

clearly not a simple exponential decay (Fig. 7D, upper) (Qiu et al., 2015). The distribution 

rises at short times. It was well fit with a model of a two-step kinetic process that does not 

generate a conformational change leading to a distinct FRET value. Such a two-step process 

is characterized by lifetime distributions given by k1 * k2 * (exp (−k1 * t) − exp(−k2 * t))/(k2 

− k1), where k1 and k2 are the rates of the two distinct steps underling the process (Floyd, 

Harrison, & van Oijen, 2010; Yildiz et al., 2003). Fitting the experiments yields estimates of 

k1 and k2 as 1.1 ± 0.67 and 0.45 ± 0.02 s−1. Preliminary experiments indicate that one of 

these rates is affected by ATP concentration and the other is not, suggesting that one of the 

steps involves ATP binding from solution. Addition of MutL, the next protein in the repair 

signaling cascade that interacts with mismatch activated MutS, did not change the FRET 

level of the first state, but did alter the kinetic behavior (Fig. 7E–G). Subsequent FRET 

states and kinetics were also modified. In particular, MutL prevented MutS from sliding 

away from the mismatch. Rather, MutS was observed to always dissociate directly from the 

mismatch under those experimental conditions (Qiu et al., 2015).

4. COMPLEMENTARITY BETWEEN SINGLE MOLECULE AND ENSEMBLE 

KINETICS: AN MMR CASE STUDY

Ensemble kinetic measurements performed on the millisecond time-scale of a single 

enzyme-catalyzed reaction cycle reveal the rates and order of multiple events, starting from 

substrate binding through transient conformational changes and catalysis and finally product 

release. For the MMR system, a combination of rapid-quench and stopped-flow experiments 

has outlined the kinetic mechanism employed by MutS as it uses ATPase activity to 

recognize and signal repair of mismatched bases in DNA. As with all ensemble methods, 

these rapid kinetic methods provide average measures of the population, which can obscure 

functionally significant distributions and dynamics of individual molecules, but they also 

yield detailed models of reaction pathways and enzyme mechanisms in solution. In this 

section, we use MutS to illustrate how single molecule and ensemble kinetic approaches 

complement each other to yield a richly textured view of the structure/dynamics–function 

relationships governing enzyme-catalyzed reactions.

4.1 DNA Binding and Bending by MutS

One key finding from the smFRET DNA binding measurements was that MutS forms a 

complex with mismatched DNA in bent conformation at a bimolecular rate constant of 1.3 × 

106 M−1 s−1 (Sass et al., 2010). Stopped-flow experiments were also used to measure 

formation of the MutS:mismatched DNA complex, with different fluorescence-based assays 

monitoring MutS or DNA conformation during the reaction. MutS was mixed rapidly with 

DNA and the rates of signal change from fluorophore-labeled DNA or MutS were measured 

at increasing concentrations of the unlabeled reactant. Experiments with labeled DNA 

determined the following: (i) increase in fluorescence anisotropy of TAMRA-labeled DNA 

reported MutS:DNA complex formation, and linear dependence of the rate on MutS 

concentration yielded a binding rate constant of 6 × 106 M−1 s−1 (Jacobs-Palmer & 

Hingorani, 2007); (ii) increase in FRET between AF488 and AF594 fluorophores flanking 

the mismatch reported DNA bending in the MutS:DNA complex, and the initial linear rate 
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dependence on MutS concentration yielded a similar binding/DNA bending rate constant of 

4 × 106 M−1 s−1 (Fig. 8A and B, pink). Experiments with MutS labeled with IAANS on the 

DNA binding domain I also yielded a similar binding/MutS conformational change rate 

constant of 7 × 106 M−1 s−1 (Fig. 8A and B, blue) (Sharma et al., 2013).

The agreement between single molecule and ensemble rates (measured by different reporter 

assays) validated the design and setup of smFRET experiments, indicating that there were no 

perturbations, for example, due to surface immobilization or fluorophore choice/position. In 

terms of the mismatch recognition mechanism, the smFRET data indicated that MutS 

binding to DNA occurs simultaneously with DNA bending. However, unlike single 

molecule, ensemble experiments allow measurements of fast rates and at high reactant 

concentrations, which ultimately revealed a different mechanism. As shown in Fig. 8B, the 

observed rates of DNA binding/bending and MutS conformational change show a linear 

dependence until ~3 μM of MutS or DNA titrant, but at higher concentrations the rates 

saturate at 20–25 s−1. This hyperbolic relationship is indicative of a two-step mechanism in 

which initial collision between MutS and DNA is followed by isomerization of both 

molecules that determines formation of the final high-affinity mismatch recognition complex 

(KD ~ 10 nM) (Sharma et al., 2013). On the flip side, while the ensemble data resolved a 

sequential induced-fit mechanism of mismatch recognition, understanding the nature of the 

conformational changes in MutS and DNA required single-molecule analysis. smFRET 

experiments with labeled MutS showed that the DNA binding domains close in toward the 

mismatch to stabilize bent DNA in the MutS: DNA complex (Qiu et al., 2012), and smFRET 

experiments with labeled DNA showed that while MutS samples DNA conformations with 

varying degrees of bending, the complex with highly bent DNA is preferred kinetically and 

energetically (Sass et al., 2010).

4.2 ATPase-Coupled MutS Actions in MMR

Ensemble equilibrium and transient kinetic measurements of ATP binding, hydrolysis, and 

product release have revealed the MutS ATPase mechanism and enabled understanding of 

how it drives MutS actions before and after mismatch recognition (reviewed in Hingorani, 

2016). Pre-steady-state rapid-quench experiments mixing MutS with 32P-ATP measured the 

stoichiometry and the rate of ATP hydrolysis (32P-ADP formation) and determined that off 

the mismatch, MutS binds and hydrolyzes only one ATP per dimer rapidly and then 

undergoes a slow rate-limiting step that defines the ~40-fold slower steady-state rate of the 

reaction (kcat) (Fig. 8C, green). Pre-steady-state stopped-flow experiments mixing MutS 

with ATP and MDCC-PBP (fluorophore-labeled phosphate binding protein reporter) 

measured the stoichiometry and the rate of phosphate release after ATP hydrolysis. The data 

were identical to those from 32P-ATP hydrolysis measurements, showing that free or 

mismatch-bound MutS releases the phosphate product rapidly (Antony & Hingorani, 2004). 

In contrast, stopped-flow experiments with Mant-ADP (fluorophore-labeled ADP analog) 

showed ADP dissociating slowly from free MutS, indicating that ADP product release limits 

the kcat following ATP hydrolysis and phosphate release (Geng et al., 2012). Thus, off the 

mismatch, MutS remains predominantly bound to (at least one) ADP. Similar experiments 

performed with MutS:mismatched DNA complex showed stimulation of ADP release 

associated with rapid ATP binding; however, ATP hydrolysis was strongly suppressed by 
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~30–50-fold (Fig. 8C, red). Thus, on the mismatch, MutS remains predominantly bound to 

(two) ATP (Antony & Hingorani, 2004). To summarize, prior to mismatch recognition the 

ATPase mechanism favors a MutS population in which at least one ADP is stably bound per 

dimer, whereas after mismatch recognition the mechanism favors a MutS:mismatched DNA 

complex population in which two ATP are stably bound per dimer.

Analogous transient kinetic measurements of IAANS-labeled MutS show that the protein 

adopts one conformation rapidly at the rate of ATP binding (increasing fluorescence) and 

another at the rate of ATP hydrolysis (decreasing fluorescence; Fig. 8D, green). These 

results indicate binary switching of MutS between ATP-bound and ADP-bound forms with 

the latter persisting in steady state prior to mismatch recognition. When MutS binds a 

mismatch, it releases ADP and binds ATP rapidly (as determined from the experiments 

described above), but the conformational change after ATP binding is much slower and 

involves multiple steps (Fig. 8D, red, increasing fluorescence). Since ATP hydrolysis is 

suppressed in the MutS: mismatched DNA complex, these results indicate rate-determining 

conversion of ATP-bound MutS into a postmismatch recognition form that can signal repair. 

The nature of the nucleotide-coupled changes in MutS conformation and dynamics was 

again revealed by single-molecule analysis. smFRET between DNA binding domains I of 

the MutS dimer reported transitions between low (domains open) and high (domains closed) 

FRET for nucleotide-free and ADP-bound protein in the absence of mismatched DNA (Qiu 

et al., 2012). Thus the ADP-bound form of MutS, which is predominant prior to mismatch 

recognition, as described above, exhibits conformational dynamics that enable it to enclose 

DNA within the binding cavity (Fig. 1) and probe the duplex for mismatched bases. 

smFRET experiments also revealed that domains I lock into a closed conformation upon 

mismatch recognition, effectively stalling MutS at the site. As the MutS:mismatched DNA 

complex releases ADP and binds ATP, domains I transition slowly into a more open, stable 

conformation that enables ATP-bound MutS to interact with MutL and initiate repair, or 

disengage from the mismatch and slide away within a few seconds if MutL is not available 

(Fig. 7) (Qiu et al., 2012, 2015). Thus, ensemble measurements provided a framework to 

establish how MutS uses its ATPase reaction for mismatch recognition and initiation of 

repair. This information was not accessible by single-molecule methods due to a lack of 

reporter assays and inadequate temporal resolution. Single-molecule experiments provided 

complementary information on how ADP- and ATP-bound forms of MutS can recognize 

mismatches and license subsequent steps in the repair pathway, respectively. This 

information was not accessible by ensemble methods because of the inability to resolve 

conformational dynamics of individual MutS molecules on and off DNA.

5. CONCLUDING REMARKS

Here we have described smFRET methods to detect sequential conformational changes that 

occur when MMR proteins interact with a base–base mismatch or nucleotide insertion in 

DNA. By attaching donor and acceptor fluorophores on either DNA or protein, we 

developed assays sensitive to the degree of DNA bending, the relative positions of DNA 

binding domains in the MutS dimer, or the position of MutS on DNA relative to the 

mismatch. Automated edge detection in smFRET time traces enabled acquisition of 

sufficient quantitative data on conformational state transitions to statistically characterize the 

Gauer et al. Page 16

Methods Enzymol. Author manuscript; available in PMC 2017 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kinetic behavior of these macromolecules. We also outlined a combined single molecule and 

ensemble kinetics approach that provided more comprehensive insights into MutS structure/

dynamics and catalytic mechanism during the reaction. Future extensions of smFRET 

experiments to include additional MMR proteins, three and four fluorophore labels yielding 

multiple FRET signal combinations (DeRocco et al., 2010; Lee et al., 2010), and 

applications in live cells (Huang, Nagy, Koide, Rock, & Koide, 2009; Li & Xie, 2011; 

Reyes-Lamothe, Sherratt, & Leake, 2010; Sakon & Weninger, 2010; Uphoff, Reyes-

Lamothe, Garza de Leon, Sherratt, & Kapanidis, 2013) are underway to complete 

understanding of the mechanisms of action of all proteins in this critical DNA repair 

pathway.
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Fig. 1. 
Front view (left) and side view (right) of Taq MutS in complex with DNA containing a 

single thymine insertion (PDB ID: 1EWQ). The two subunits of the homodimer are colored 

blue and green, and the DNA is shown in orange (Obmolova et al., 2000).
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Fig. 2. 
Overview of the concept of FRET. (A) Schematic illustrating FRET exchange between the 

donor fluorophore (D, green) and the acceptor fluorophore (A, red). Donor fluorescence is 

excited by the external light source (blue), and as the distance between D and A decreases, 

emission from D decreases and emission from A increases. (B) The relation between FRET 

efficiency (E) and the separation of the fluorophores d is scaled by the R0 parameter. Here 

R0 = 5 nm is used.
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Fig. 3. 
Optical setup and data analysis pipeline. (A) An example of the total internal reflection 

fluorescence microscope. (B) A schematic of the data analysis pipeline. The specific trace is 

from experiments measuring DNA bending by MutS at a T-bulge mismatch by the method 

diagramed in Fig. 4A.
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Fig. 4. 
Schematic of the types of FRET signals utilized in DNA MMR assays. FRET can report (A) 

DNA bending if both donor and acceptor are on the DNA flanking the mismatch, (B) MutS 

conformation if both donor and acceptor are on the protein, and (C) relative distance 

between a domain of MutS and a site on DNA if acceptor is on the DNA and donor is on 

MutS.
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Fig. 5. 
Chung–Kennedy smoothing algorithm. (A) An example of data containing a transition 

between t +2 and t +3. (B) A schematic depicting three sizes of “forward” (green) and 

“backward” (red) average windows. (C) A schematic depicting four-point “forward” (green) 

and “backward” predictor windows.
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Fig. 6. 
A novel transition detection method based on the Chung–Kennedy filter. “Forward” and 

“backward” predictor windows (left column, green and red brackets, respectively) are shown 

for successive time points (blue diamonds). Standard deviations for the depicted predictor 

windows (right column) reveal two identical peaks. Note that the midpoint between these 

peaks (between t +2 and t +3) identifies the time of the transition in the data.
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Fig. 7. 
smFRET measurements of the kinetics of MutS mismatch recognition and subsequent 

conformational changes. (A) Experimental scheme: 2 mM ATP, 10 nM Alexa555-MutS, 

Cy5-T-bulge DNA, and 200 nM unlabeled MutL (when present). Example time traces of 

donor and acceptor emission and calculated FRET in the absence (B) and presence (E) of 

MutL for events with transitions. FRET histograms for binding events with exactly one 

donor and one acceptor and with FRET transitions reveal three states in the absence of MutL 

(C) with dwell time distributions fit (red line) by a two-step model for the first state (D, top 
panel) and a one-step model for the middle state and last state (D, middle and lower panels). 

In the presence of MutL, FRET histograms for the first state (F, top panel) reveal a narrow 

peak, but the dwell time distributions (G, top panel) still require a fit (red line) with two 

steps. Histograms of the subsequent FRET states show two nonzero peaks (F, lower panel), 
and the dwell time distributions are fit well (red line) with a one-step model (G, middle and 

lower panels). Numbers within panels report rates obtained from the fits. Adapted from Qiu, 
R., Sakato, M., Sacho, E. J., Wilkins, H., Zhang, X., Modrich, P., … Weninger, K. R. (2015). 
MutL traps MutS at a DNA mismatch. Proceedings of the National Academy of Sciences of 

the United States of America, 112(35), 10914–10919. doi:10.1073/pnas.1505655112.
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Fig. 8. 
Stopped-flow studies of MMR proteins. (A) In stopped-flow experiments, IAANS 

fluorescence quenching reports MutS domain I movement on DNA binding (0.1 μM 
MutSIAANS mixed with 3 μM DNA(+T); blue trace), and increasing FRET between AF488 

and AF594 flanking the T-bulge reports DNA bending on MutS binding (0.03 μM 
DNA(+T)AF488–AF594 mixed with 3 μM MutS; pink trace). (B) The rates of these 

conformational changes increase hyperbolically with titrant concentration to a maximum of 

~25 s−1 and fit to a two-step binding model with initial rapid collision forming a weak 

complex followed by intramolecular conformational changes to form a tight complex (KD ~ 

10 nM). (C) Pre-steady-state rapid-quench experiments with MutS reveal a burst of 32P-ADP 

formation at 10 s−1 (40°C) followed by slow steady state kcat = 0.3 s−1 (green trace). The 

burst amplitude indicates rapid hydrolysis of one ATP per MutS dimer. Pre-incubation of 

MutS with T-bulge DNA results in the inhibition of the burst and a slow ATPase rate of 0.2 

s−1 (red trace). (D) Stopped-flow traces of MutSIAANS mixed with ATP show that domains I 

rearrange concurrently with ATP binding (signal increase) and switch right back with ATP 

hydrolysis (signal decrease), whereas one ADP-bound MutSIAANS–DNA(+T) complex 

shows a lag (likely reflecting ADP release) followed by slow change in MutS conformation 

(signal increase) to a stable ATP-bound MMR ready complex. Adapted from Hingorani, M. 

M. (2016). Mismatch binding, ADP-ATP exchange and intramolecular signaling during 
mismatch repair. DNA Repair (Amst), 38, 24–31. doi:10.1016/j.dnarep.2015.11.017.
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