1,647 research outputs found

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    A methodology for integrated risk management and proactive scheduling of construction projects.

    Get PDF
    An integrated methodology is developed for planning construction projects under uncertainty. The methodology relies on a computer supported risk management system that allows to identify, analyze and quantify the major risk factors and derive the probability of their occurrence and their impact on the duration of the project activities. Using project management estimates of the marginal cost of activity starting time disruptions, a proactive baseline schedule is developed that is suffciently protected against the anticipated disruptions with acceptable project makespan performance. The methodology is illustrated on a real life application.Risk; Risk management; Management; Scheduling; Construction; Planning; Uncertainty; Factors; Probability; Impact; Project management; Cost; Time; Performance; Real life;

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    Simultaneous structuring and scheduling of multiple projects with flexible project structures

    Get PDF
    We study the problem to simultaneously decide on the structures and the schedules for an entire portfolio of flexible projects. The projects are flexible as alternative technologies and procedures can be used to achieve the respective project task. The choice between different technologies and procedures affects the activities to be implemented and thus the precedence relations, i.e., the structure of the project. The different projects have given due dates with specific delay payments and compete for scarce resources. In this situation, project structure decisions and scheduling decisions are highly intertwined and have to be made simultaneously in order to achieve the assumed objective of minimizing the delay payments for the entire project portfolio. The problem is formally stated and solved via novel and problem-specific genetic algorithms. The performance of the new algorithms is evaluated with respect to speed and accuracy in a systematic and comprehensive numerical study. © 2020, The Author(s)

    Proactive-reactive, robust scheduling and capacity planning of deconstruction projects under uncertainty

    Get PDF
    A project planning and decision support model is developed and applied to identify and reduce risk and uncertainty in deconstruction project planning. It allows calculating building inventories based on sensor information and construction standards and it computes robust project plans for different scenarios with multiple modes, constrained renewable resources and locations. A reactive and flexible planning element is proposed in the case of schedule infeasibility during project execution

    Cost Factor Focused Scheduling and Sequencing: A Neoteric Literature Review

    Get PDF
    The hastily emergent concern from researchers in the application of scheduling and sequencing has urged the necessity for analysis of the latest research growth to construct a new outline. This paper focuses on the literature on cost minimization as a primary aim in scheduling problems represented with less significance as a whole in the past literature reviews. The purpose of this paper is to have an intensive study to clarify the development of cost-based scheduling and sequencing (CSS) by reviewing the work published over several parameters for improving the understanding in this field. Various parameters, such as scheduling models, algorithms, industries, journals, publishers, publication year, authors, countries, constraints, objectives, uncertainties, computational time, and programming languages and optimization software packages are considered. In this research, the literature review of CSS is done for thirteen years (2010-2022). Although CSS research originated in manufacturing, it has been observed that CSS research publications also addressed case studies based on health, transportation, railway, airport, steel, textile, education, ship, petrochemical, inspection, and construction projects. A detailed evaluation of the literature is followed by significant information found in the study, literature analysis, gaps identification, constraints of work done, and opportunities in future research for the researchers and experts from the industries in CSS

    A general framework integrating techniques for scheduling under uncertainty

    Get PDF
    Ces dernières années, de nombreux travaux de recherche ont porté sur la planification de tâches et l'ordonnancement sous incertitudes. Ce domaine de recherche comprend un large choix de modèles, techniques de résolution et systèmes, et il est difficile de les comparer car les terminologies existantes sont incomplètes. Nous avons cependant identifié des familles d'approches générales qui peuvent être utilisées pour structurer la littérature suivant trois axes perpendiculaires. Cette nouvelle structuration de l'état de l'art est basée sur la façon dont les décisions sont prises. De plus, nous proposons un modèle de génération et d'exécution pour ordonnancer sous incertitudes qui met en oeuvre ces trois familles d'approches. Ce modèle est un automate qui se développe lorsque l'ordonnancement courant n'est plus exécutable ou lorsque des conditions particulières sont vérifiées. Le troisième volet de cette thèse concerne l'étude expérimentale que nous avons menée. Au-dessus de ILOG Solver et Scheduler nous avons implémenté un prototype logiciel en C++, directement instancié de notre modèle de génération et d'exécution. Nous présentons de nouveaux problèmes d'ordonnancement probabilistes et une approche par satisfaction de contraintes combinée avec de la simulation pour les résoudre. ABSTRACT : For last years, a number of research investigations on task planning and scheduling under uncertainty have been conducted. This research domain comprises a large number of models, resolution techniques, and systems, and it is difficult to compare them since the existing terminologies are incomplete. However, we identified general families of approaches that can be used to structure the literature given three perpendicular axes. This new classification of the state of the art is based on the way decisions are taken. In addition, we propose a generation and execution model for scheduling under uncertainty that combines these three families of approaches. This model is an automaton that develops when the current schedule is no longer executable or when some particular conditions are met. The third part of this thesis concerns our experimental study. On top of ILOG Solver and Scheduler, we implemented a software prototype in C++ directly instantiated from our generation and execution model. We present new probabilistic scheduling problems and a constraintbased approach combined with simulation to solve some instances thereof

    Evaluation of Material Shortage Effect on Assembly Systems Considering Flexibility Levels

    Get PDF
    The global pandemic caused delays in global supply chains, and numerous manufacturing companies are experiencing a lack of materials and components. This material shortage affects assembly systems at various levels: process level (decreasing of the resource efficiency), system level (blocking or s tarvation of production entities), and company level (breaking the deadlines for the supplying of the products to customers or retailers). Flexible assembly systems allow dynamic reactions in such uncertain environments. However, online scheduling algorithms of current research are not considering reactions to material shortages. In the present research, we aim to evaluate the influence of material shortage on the assembly system performance. The paper presents a discrete event simulation of an assembly system. The system architecture, its behavior, the resources, their capacities, and product specific operations are included. The material shortage effect on the assembly system is compensated utilizing different system flexibility levels, characterized by operational and routing flexibility. An online control algorithm determines optimal production operation under material shortage uncertain conditions. With industrial data, different simulation scenarios evaluate the benefits of assembly systems with varying flexibility levels. Consideration of flexibility levels might facilitate exploration of the optimal flexibility level with the lowest production makespan that influence further supply chain, as makespan minimization cause reducing of delays for following supply chain entities
    corecore