29,224 research outputs found

    Does "thin client" mean "energy efficient"?

    Get PDF
    The thick client –a personal computer with integral disk storage and local processing capability, which also has access to data and other resources via a network connection – is accepted as the model for providing computing resource in most office environments. The Further and Higher Education sector is no exception to that, and therefore most academic and administrative offices are equipped with desktop computers of this form to support users in their day to day tasks. This system structure has a number of advantages: there is a reduced reliance on network resources; users access a system appropriate to their needs, and may customise “their” system to meet their own personal requirements and working patterns. However it also has disadvantages: some are outside the scope of this project, but of most relevance to the green IT agenda is the fact that relatively complex and expensive (in first cost and in running cost) desktop systems and servers are underutilised – especially in respect of processing power. While some savings are achieved through use of “sleep” modes and similar power reducing mechanisms, in most configurations only a small portion of the overall total available processor resource is utilised. This realisation has led to the promotion of an alternative paradigm, the thin client. In a thin client system, the desktop is shorn of most of its local processing and data storage capability, and essentially acts as a terminal to the server, which now takes on responsibility for data storage and processing. The energy benefit is derived through resource sharing: the processor of the server does the work, and because that processor is shared by all users, a number of users are supported by a single system. Therefore – according to proponents of thin client – the total energy required to support a user group is reduced, since a shared physical resource is used more efficiently. These claims are widely reported: indeed there are a number of estimation tools which show these savings can be achieved; however there appears to be little or no actual measured data to confirm this. The community does not appear to have access to measured data comparing thin and thick client systems in operation in the same situation, allowing direct comparisons to be drawn. This is the main goal of this project. One specific question relates to the overall power use, while it would seem to be obvious that the thin client would require less electricity, what of the server? Two other variations are also considered: it is not uncommon for thin client deployments to continue to use their existing PCs as thin client workstations, with or without modification. Also, attempts by PC makers to reduce the power requirements of their products have given rise to a further variation: the incorporation of low power features in otherwise standard PC technology, working as thick clients. This project was devised to conduct actual measurements in use in a typical university environment. We identified a test area: a mixed administrative and academic office location which supported a range of users, and we made a direct replacement of the current thick client systems with thin client equivalents; in addition, we exchanged a number of PCs operating in thin and thick client mode with devices specifically branded as “low power” PCs and measured their power requirements in both thin and thick modes. We measured the energy consumption at each desktop for the duration of our experiments, and also measured the energy draw of the server designated to supporting the thin client setup, giving us the opportunity to determine the power per user of each technology. Our results show a significant difference in power use between the various candidate technologies, and that a configuration of low power PC in thick client mode returned the lowest power use during our study. We were also aware of other factors surrounding a change such as this: we have addressed the technical issues of implementation and management, and the non-technical or human factors of acceptance and use: all are reported within this document. Finally, our project is necessarily limited to a set of experiments carried out in a particular situation, therefore we use estimation methods to draw wider conclusions and make general observations which should allow others to select appropriate thick or thin client solutions in their situation

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency
    • …
    corecore