635 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Dual-Band Dual-Linear Polarization Reflectarray for mmWaves/5G Applications

    Get PDF
    A dual-band dual-linear polarization reflectarray configuration is developed for future 5G cellular applications. A single layer unit cell including two pairs of miniaturized fractal patches is designed to operate at two distinct frequencies within the Ka-band (27/32 GHz), in a dual-polarization mode. An in-depth analysis of the unit cell behavior is carried out, to demonstrate the total independence between the designed frequency bands and polarizations. The proposed configuration offers a very simply and thin structure, small unit cell sizes, and low losses, while leading to an independent optimization of the phase at each frequency and polarization. A dual-band/dual-polarized reflectarray prototype is designed and tested, thus demonstrating the unit cell flexibility to offer arbitrary beam directions/shapes at each frequency, for both polarizations

    Efficient Spectral Domain MoM for the Design of Circularly Polarized Reflectarray Antennas Made of Split Rings

    Get PDF
    The method of moments (MoM) in the spectral domain is used for the analysis of the scattering of a plane wave by a multilayered periodic structure containing conducting concentric split rings in the unit cell. Basis functions accounting for edge singularities are used in the approximation of the current density on the split rings, which makes it possible a fast convergence of MoM with respect to the number of basis functions. Since the 2-D Fourier transforms of the basis functions cannot be obtained in closed-form, judicious tricks (controlled truncation of infinite summations, interpolations, etc.) are used for the efficient numerical determination of these Fourier transforms. The implemented spectral domain MoM software has been used in the design of a circularly polarized reflectarray antenna based on split rings under the local periodicity condition. The antenna has been analyzed with our spectral domain MoM software, with CST and with HFSS, and good agreement has been found among all sets of results. Our software has proven to be around 27 times faster than CST and HFSS

    Neural Network Characterization of Reflectarray Antennas

    Get PDF
    An efficient artificial neural network (ANN) approach for the modeling of reflectarray elementary components is introduced to improve the numerical efficiency of the different phases of the antenna design and optimization procedure, without loss in accuracy. The comparison between the results of the analysis of the entire reflectarray designed using the simplified ANN model or adopting a full-wave characterization of the unit cell finally proves the effectiveness of the proposed model

    Dual-Layer Single-Varactor Driven Reflectarray Cell for Broad-Band Beam-Steering and Frequency Tunable Applications

    Get PDF
    A dual-layer active reflectarray configuration is proposed for broad-band beam-steering and/or frequency-tunable applications. A unit cell composed by two stacked fixed-size rectangular patches, properly loaded with a single varactor diode, is designed to realize the dynamic phase tuning mechanism. The proposed approach offers wider bandwidths, with respect to the existing varactor-based reflectarray cells, and quite good frequency reconfigurability features, as demanded by several radar or satellite communication applications. An X-band reflectarray cell is fabricated and tested, to prove the effectiveness of the proposed approach, achieving a 318° phase agility within a measured frequency range of about 14.6% with respect to the central design frequency (i.e., 11 GHz). Wideband beam-steering reflectarray designs are demonstrated, showing 1-dB gain bandwidths equal to 9-10%

    A review of wideband reflectarray antennas for 5G communication systems

    Get PDF
    The advancement in the current communication technology makes it incumbent to analyze the conventional features of reflectarray antenna for future adaptability. This work thoroughly reviews the design and experimental features of reflectarray antenna for its bandwidth improvement in microwave and millimeter wave frequency ranges. The paper surveys the fundamental and advanced topologies of reflectarray design implementations which are needed particularly for its broadband features. The realization of its design approaches has been studied at unit cell and full reflectarray levels for its bandwidth enhancement. Various design configurations have also been critically analyzed for the compatibility with the high frequency 5G systems

    Design of dual-band microstrip reflectar-ray using single layer multiresonance double cross elements

    Get PDF
    A multiresonance double cross element is used to design a dual-band reflectarray with dual linear polarization. The proposed element has a single conductive layer structure which makes it easy to manufacture. The results presented in this paper show that the mutual effect between the elements of the two bands is negligible. Hence, it is easy to achieve the phase compensation for each band separately. The simulated and measured results for an element designed to cover the X- and K-bands have confirmed the suitability of the proposed element to build a dual-band reflectarray

    MEMS-reconfigurable metamaterials and antenna applications

    Get PDF
    This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by micro-electro-mechanical systems (MEMS) technology. First, we show reconfigurable composite right/left handed transmission lines (CRLH-TLs) having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA). Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS) antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.Comment: 8 pages; 8 figures; International Journal of Antennas and Propagatio
    corecore